4.1 对称元素和对称操作 4.1.1 对称元素和对称操作的定义 4.1.2 对称元素和对称操作的类型 4.2 对称操作的乘积、乘法表 4.2.1 对称操作的乘积 4.2.2 对称元素和对称操作之间的一般关系 4.2.3 分子全部对称操作集合的性质 乘法表 4.3 群的基本概念 4.3.1 群的定义 4.3.2 群的几个例子 4.3.3 子群,类和群的同构 4.4 对称点群 4.4.1 对称点群 4.4.2 分子对称性的系统分类法 4.4.3 实例 4.5 群的表示 4.5.1 对称操作的矩阵形式 4.5.2 群的表示 4.6 群的不可约表示的性质 4.6.1 “广义正交定理”及其推论 4.6.2 群的特征标表 4.6.3 可约表示的分解 4.7 基函数 4.7.1 基函数 4.7.2 对称性匹配的线性组合(SALC)投影算子法 4.8 群论和量子力学 4.8.1 本征函数是不可约表示的基 4.8.2 能级的简并度等于不可约表示的维数 4.9 群论在化学键和分子力学中的应用 4.9.1 亲化轨道(D3h 对称性) 4.9.2 休克尔(Huckel)分子轨道(HMO)理论 苯分子 4.9.3 分子振动 H2O 分子 4.10 直乘积表示、分支规则 4.10.1 直积表示 4.10.2 对称直积和反称直积 4.10.3 选择定则 4.10.4 分支规则