点击切换搜索课件文库搜索结果(74)
文档格式:PPT 文档大小:441KB 文档页数:12
函数f(x)的单调性与极值是函数的重要性态.如图: 曲线弧AB是单增的曲线.但从A到C的曲线是向下弯 (或凸)的;从C到B的曲线是向上弯(或凹)的.显然,曲线 的弯曲方向和弯曲方向的转变点对我们研究函数的性 态是十分重要的.这就是下面讨论的凹性与拐点
文档格式:PPT 文档大小:491.5KB 文档页数:17
由牛顿—莱布尼兹公式知:计算定积分f(x)d 的关键在于求出f(x)在[a,b]上的一个原函数F(x);而由 第五章知求函数的原函数(即不定积分)的方法有凑微分法、 换元法和分部积分法.因而在一定条件下,也可用这几 种方法来计算定积分
文档格式:PPT 文档大小:491.5KB 文档页数:17
由牛顿—莱布尼兹公式知:计算定积分f(x)d 的关键在于求出f(x)在[a,b]上的一个原函数F(x);而由 第五章知求函数的原函数(即不定积分)的方法有凑微分法、 换元法和分部积分法.因而在一定条件下,也可用这几 种方法来计算定积分
文档格式:PPT 文档大小:835.5KB 文档页数:19
前面讨论的定积分不仅要求积分区间[a,b]有限,而且 还要求被积函数f(x)在[a,b上有界然而实际还经常遇到 无限区间或无界函数的积分问题.这两类积分统称为广义 积分.其中前者称为无穷积分,后者称为瑕积分 对于广义积分的计算是以极限为工具来解决的,即先 将广义积分转化为定积分,再对该定积分求极限
文档格式:PPT 文档大小:899.5KB 文档页数:34
微分中值定理包括罗尔定理、拉格朗日中值定理、柯西中值定理 一.罗尔(Rolle)定理 定理1(罗尔定理)设函数f(x)满足下列条件: (1)在闭区间[a,b]上连续; (2)在开区间(a,b)上可导; (3)f(a)=f(b);
文档格式:PPT 文档大小:455KB 文档页数:16
本节先介绍极限存在准则利用它们来导出两个重 要极限. 一、极限存在准则 准则I(夹逼定理)若Vx∈U(x,)(或|x>M), 均有g(x)≤f(x)≤h(x)且limg(x)=limh(x)=A, 则有limf(x)=A
文档格式:PPT 文档大小:430KB 文档页数:17
问题:根据极限的定义,只能验证某个常数A 是否为某个函数f(x的极限,而不能求出函数f(x的 极限.为了解决极限的计算问题,下面介绍极限的运 算法则;并利用这些法则和§2.1及22中的某些结 论来求函数极限
文档格式:PPT 文档大小:1.02MB 文档页数:52
第一部分:内容小结 一、极限,连续,偏导数,全微分 1.二元函数的定义z=f(x,y) 2.二元函数的极限limf(x,y)=A
文档格式:PPT 文档大小:1.57MB 文档页数:36
fz=f(x,y) 积为已知的立体的体积 y=y Dda (,y) D是矩形区域[a,b;cd Q(y)= fxyd I= avd, y d y (y) D b 问题:Q(y)是什么图形?是曲边梯形
文档格式:DOC 文档大小:203KB 文档页数:4
第二章多元函数 2-3习题讨论 23-1讨论题 23-2参考解答 习题讨论 题目 )设xn,yn∈R\,且 limx=x, lim y=y,证明 lim(,,,)=(,y) (2)函数f(x,y)=(,列在R\×R\中连续 (二)在长方体T内任取一点M0,是否一定存在一张过点M的平 面∏I,将该长方体恰分成两等份 (三)设集合A,BCR”,证明
上页12345678下页
热门关键字
搜索一下,找到相关课件或文库资源 74 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有