点击切换搜索课件文库搜索结果(577)
文档格式:PDF 文档大小:1.78MB 文档页数:9
利用电化学手段在氧化铟锡(ITO)导电玻璃表面成功制备了Rh纳米粒子,并发现包裹剂、支持电解质以及电化学参数对产物的形貌及尺寸有着显著影响.通过对上述参数的调控实现了Rh纳米粒子的形貌可控制备,得到了准球形、岛状以及片层状的Rh纳米粒子.此外对岛状Rh纳米粒子在表面增强拉曼光谱中的应用进行了研究.结果表明该种结构具有良好的表面增强拉曼活性
文档格式:PDF 文档大小:1.07MB 文档页数:5
采用直流电沉积工艺,制备了平均晶粒尺寸为56nm的致密纳米晶铜.室温下进行单向拉伸实验,发现纳米晶铜的强度和韧性均随应变速率的升高而增大,特别是韧性的速率敏感十分显著.应变速率由1.04×10-5s-1升至1.04s-1时,断裂应变由23.2%增至39.4%,同时抗拉强度由309MPa增至451MPa.这一现象可归因于两个方面:首先,纳米晶铜的应变硬化行为随应变速率的升高而增大,从而使其均匀变形阶段的应变增加;其次,高应变速率下纳米晶铜颈缩时发生晶粒转动,这有助于其失稳阶段的应变增加
文档格式:PDF 文档大小:5.6MB 文档页数:7
本文制备纳米SiC基体改性的SiC-C/C复合材料,利用X射线衍射技术、高分辨率透射电镜等研究SiC对碳材料的石墨化度的影响.纳米SiC能够显著促进碳基体材料的石墨化度,同时通过高分辨率透射电镜在纳米SiC颗粒周围观测到明显的石墨化结构,并且距离SiC越近,碳基体的石墨化程度越高.通过静态氧化实验研究SiC-C/C复合材料的抗氧化性能.结果表明,随着SiC加入量的增加复合材料的抗氧化性显著提高,纳米SiC在高温下生成较为均匀的SiO2保护层,覆盖在碳材料的表面,阻碍氧气与碳材料的接触,并且SiC含量越高,形成的保护层越厚,抗氧化能力越强
文档格式:PDF 文档大小:614.67KB 文档页数:4
采用体积比为3∶1的浓硫酸和浓硝酸混合溶液对多壁碳纳米管进行表面氧化改性,利用场发射扫描电镜(FE-SEM)、比表面分析仪(BET)以及X射线光电子能谱(XPS)等手段分析了酸处理前后多壁碳纳米管的形貌、比表面积和表面官能团,利用循环伏安测试和充放电测试分析了酸处理前后多壁碳纳米管的电化学性能.结果表明,通过酸氧化改性,多壁碳纳米管的管长变短,比表面积增加,表面含氮和含氧官能团增加,从而导致其电化学性能大幅度地提高,在1 mol·L-1的硫酸电解液中比电容从7 F·g-1增加到66 F·g-1
文档格式:PDF 文档大小:1.04MB 文档页数:9
采用分子动力学模拟方法研究了不同尺寸Au纳米颗粒在烧结过程中晶型转变及烧结颈长大机制.研究发现纳米颗粒的烧结颈生长主要分为两个阶段:初始烧结颈的快速形成阶段和烧结颈的稳定长大阶段.不同尺寸纳米颗粒烧结过程中烧结颈长大的主要机制不同:当颗粒尺寸为4 nm时,原子迁移主要受晶界(或位错)滑移、表面扩散和黏性流动控制;当尺寸在6nm左右时,原子迁移主要受晶界扩散、表面扩散和黏性流动控制;当颗粒尺寸为9 nm时,原子迁移主要受晶界扩散和表面扩散控制.烧结过程中Au颗粒的fcc结构会向无定形结构转变.此外,小尺寸的纳米颗粒在烧结过程中由于位错或晶界滑移、原子的黏性流动等因素会形成hcp结构
文档格式:PDF 文档大小:1.83MB 文档页数:41
1.纳米通道的概念及分类 2.纳米通道技术的应用 3.纳米通道技术的前景
文档格式:PDF 文档大小:649.5KB 文档页数:5
采用纳米压痕法研究了氢对Ni50Mn30Ga20取向多晶室温纳米压痕蠕变和压痕塑性形变的影响.结果表明,Ni50Mn30Ga20取向多晶在室温下能够发生纳米压痕蠕变.在试样室温真空充氢之后,引入的氢不仅能够促进纳米压痕蠕变,还可以使得马氏体相变的\伪弹性\存储的弹性能得以释放,发生逆转变,使部分塑性变形回复
文档格式:PDF 文档大小:812.23KB 文档页数:5
采用X射线衍射仪、投射电镜仪和扫描电镜仪等测试手段,系统地研究了不同聚乙烯亚胺(PEI)浓度对ZnO纳米线阵列膜的形貌、线密度和尺寸的影响及ZnO纳米线阵列膜的光电性能.研究结果表明,在PEI浓度从3.2 mmol·L-1变化到9.3 mmol·L-1所制备的所有ZnO纳米线阵列膜中,使用7.3 mmol·L-1PEI浓度合成的ZnO纳米线阵列膜,制成染料敏化太阳能电池后获得0.66%的最高的光电转换效率
文档格式:PDF 文档大小:1.49MB 文档页数:6
分别采用传统冷轧轧制液和纳米TiO2的冷轧轧制液,对无取向硅钢板进行了四辊冷轧实验.重点研究两种冷轧轧制液的轧制润滑性能和对轧后硅钢薄带表面质量和耐蚀性能的影响.通过场发射电子显微镜和能谱仪对使用两种轧制液轧后得到的硅钢薄带表面形貌和成分进行了分析.给出了轧制液中TiO2纳米粒子在轧制过程中的抗磨减摩机理.在轧制载荷较高时,纳米TiO2轧制液具有优良的轧制润滑性能并能显著改善轧后硅钢薄带的表面质量.同时在高载荷作用下,TiO2纳米粒子被压入硅钢薄带基体,形成一个滑动系来支撑载荷,从而使润滑膜的耐磨性提高
文档格式:PPT 文档大小:15.3MB 文档页数:75
纳米结构材料 纳米结构材料的性能 纳米结构材料的制备 介孔材料的制备
首页上页345678910下页末页
热门关键字
搜索一下,找到相关课件或文库资源 577 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有