点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:491KB 文档页数:26
隐函数的求导法则 一、一个方程的情形 1.F(x,y)=0 隐函数存在定理1设函数F(x,y)在点P(x,yo)的某一邻域内具有连续的偏导数,且F(x,yo)=0,F(x,yo)≠0,则方程F(x,y)=0在点P(x,yo)的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数y=f(x),它满足条件yo=f(x),并有
文档格式:PDF 文档大小:4.5MB 文档页数:37
定义 1.2.2: 设Ω 为一样本空间,F 为Ω 某些子集所组成 的集合类,如果F 满足: (1)Ω ∈F ; (2)若 A∈F ,则对立事件 A∈F ; (3)若 A ∈ , n = 1, 2,L, n F 则可列并 ∈F
文档格式:DOC 文档大小:854.5KB 文档页数:19
定义1设V是数域P上的一个线性空间,f是V到P的一个映射,如果f 满足 1)f(a+)=f(a)+f() 2) f(ka)=(a), 式中a,B是V中任意元素,k是P中任意数,则称f为V上的一个线性函数 从定义可推出线性函数的以下简单性质:
文档格式:DOC 文档大小:109KB 文档页数:14
设fx)是定义在闭区间[ab]上的连续函数,如果x∈[ab]使 得f(x)=0则称x是fx)的一个零点 从几何图形看,函数f(x)的零点就是曲线y=f(x)与x轴的交 点。这个事实对我们求数值解很有启发作用 提示:函数f)的零点其实也就是(非线性)方程fx)=0的 解,所以求函数的零点问题也就是非线性方程求解的问题。 结论:由高等数学中的界值定理可知,若fa)f(b)<0,方程 f(x)=0在[ab内一定有解 求函数零点的方法有对分法,牛顿法和不动点算法
文档格式:PPT 文档大小:40KB 文档页数:1
如果在x的某一去心邻域内f(x)≥0(或f(x)≤0),而且 f(x)→A(x→x),那么A≥0(或A≤0) 证明设在x的某一去心邻域内f(x)≥0. 假设上述论断不成立,即设A<0,那么由函数极限的 局部保号性就有x的某一去心邻域,在该邻域内f(x)<0,这 与f(x)≥0的假定矛盾.所以A≥0
文档格式:PDF 文档大小:182.45KB 文档页数:30
一、本单元的内容要点 1函数单调性的判别法 设f∈C[a,b]∩D(a,b),若Vxe(ab),有f(x)>0(<0) 则f(x)在[ab]上是单调增加(减少). 若当x1时,有f(x)≥0(≤0),且使得f(x)=0的 点(驻点)在的任何有界子区间内只有有限多个,则f(x) 在上单调增加(减少)
文档格式:PPT 文档大小:350KB 文档页数:13
微分的逆运算不定积分 定义6.1.1若在某个区间上,函数F(x)和f(x)成立关系 F(x)=f(x), 或等价地, 则称F(x)是f(x)在这个区间上的一个原函数
文档格式:DOC 文档大小:254.5KB 文档页数:3
5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V到K的一个线性函数(即f为V到K的一个线性映射)如同一般的线性映射,有以下事实:
文档格式:PPT 文档大小:458KB 文档页数:13
定义1:不可约多项式p(x)称为f(x)的k重因式 (kEN),如果p(x)f(x)而p(x)f(x) 当k=1时,p(x)就称f(x)的单因式, 当k>1时,p(x)称为f(x)的重因式。 如果f(x)的标准分解式为:
文档格式:PDF 文档大小:356.32KB 文档页数:41
连续函数的定义 定义3.2.1 设函数 f x( ) 在点 x0的某个邻域中有定义,并且成立 lim x x → 0 f x( ) = f x( ) 0 , 则称函数 f x( ) 在点 x0 连续,而称 x0是函数 f x( ) 的连续点。 “函数 f x( ) 在点 x0 连续”的符号表述(或称“ε −δ ”表述):
首页上页345678910下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有