点击切换搜索课件文库搜索结果(990)
文档格式:DOC 文档大小:616.5KB 文档页数:5
习题 1.计算下列含参变量积分的导数 (1)F(x)=e-ay'idy (2)F(y)= In yx dx (3)F(=S In(+u)dx 2.设f(x)为可微函数,且F(x)=「(x+y)/(Oy)d,求F(x) 3.求椭园积分E(k)=[√1-k2sin2odg及F(k) -k sin o
文档格式:DOC 文档大小:1.03MB 文档页数:6
Ⅰ、选择题(共10小题,每小题3分,共30分) 每题给出四个答案,其中只有一个是正确的,请将正确答案的标号(A或B或C或D) 写在题号前的横线上 1、积分∫es(-3)d等于 (A)0(B)1(C)e3OD)e3 2、下列等式不成立的是 (A)f0)6\(0)=f(0)6'(0 B)A06(0=f()5( (C)f)*6(0)=f(0 (D)f0)°(0)=f(0
文档格式:DOC 文档大小:854.5KB 文档页数:19
定义1设V是数域P上的一个线性空间,f是V到P的一个映射,如果f 满足 1)f(a+)=f(a)+f() 2) f(ka)=(a), 式中a,B是V中任意元素,k是P中任意数,则称f为V上的一个线性函数 从定义可推出线性函数的以下简单性质:
文档格式:PPT 文档大小:238KB 文档页数:41
前面主要讨论了由已知函数f(t)求它的象函数 F(s),但在实际应用中常会碰到与此相反的问 题,即已知象函数F(s)求它的象原函数f(t).本 节就来解决这个问题. 由拉氏变换的概念可知,函数f(t)的拉氏变换, 实际上就是f(tu(t)e-的傅氏变换
文档格式:PDF 文档大小:182.45KB 文档页数:30
一、本单元的内容要点 1函数单调性的判别法 设f∈C[a,b]∩D(a,b),若Vxe(ab),有f(x)>0(<0) 则f(x)在[ab]上是单调增加(减少). 若当x1时,有f(x)≥0(≤0),且使得f(x)=0的 点(驻点)在的任何有界子区间内只有有限多个,则f(x) 在上单调增加(减少)
文档格式:DOC 文档大小:20.5KB 文档页数:1
1.1.1(单项选择)已知函数f(x)=x2+2x,则f(2)与f(12)的积为() A.1B.3C.10 D.5 (难度:A;水平:a) 1.1.2(单项选择)已知函数f(x)=x2+2x则f(2)与f(-2)的和为() A.1B.3 C.10 D.5 (难度:A;水平:b)
文档格式:DOC 文档大小:109KB 文档页数:14
设fx)是定义在闭区间[ab]上的连续函数,如果x∈[ab]使 得f(x)=0则称x是fx)的一个零点 从几何图形看,函数f(x)的零点就是曲线y=f(x)与x轴的交 点。这个事实对我们求数值解很有启发作用 提示:函数f)的零点其实也就是(非线性)方程fx)=0的 解,所以求函数的零点问题也就是非线性方程求解的问题。 结论:由高等数学中的界值定理可知,若fa)f(b)<0,方程 f(x)=0在[ab内一定有解 求函数零点的方法有对分法,牛顿法和不动点算法
文档格式:PPT 文档大小:40KB 文档页数:1
如果在x的某一去心邻域内f(x)≥0(或f(x)≤0),而且 f(x)→A(x→x),那么A≥0(或A≤0) 证明设在x的某一去心邻域内f(x)≥0. 假设上述论断不成立,即设A<0,那么由函数极限的 局部保号性就有x的某一去心邻域,在该邻域内f(x)<0,这 与f(x)≥0的假定矛盾.所以A≥0
文档格式:DOC 文档大小:254.5KB 文档页数:3
5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V到K的一个线性函数(即f为V到K的一个线性映射)如同一般的线性映射,有以下事实:
文档格式:DOC 文档大小:73.5KB 文档页数:2
一、填空题(本大题共6小题,每小题4分,总计24分) 1. f()=e\cost L[f()]= 2.=+4将乙平面上|<2变为w平面上的 学号 3.f()=ze()在何处可导 4.i= 5.F()=n(o)则f(t)= 6.f(=)=u+iv为解析函数,u-v=x3+3x2y-xy2-y3为解析函数,则v=
首页上页345678910下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有