点击切换搜索课件文库搜索结果(3733)
文档格式:DOC 文档大小:303.5KB 文档页数:6
教学内容及教学过程 3.2剪力图和弯矩图 dx2dx 推论: dQ(x) 线 1、q(x)=0 =0,Q(x)=常量 'd'Mx) dx2=q(x)=0,M(x)为一次函数 d(x)=常数,Q(x)为一次函数 dx 2、q(x)=常数,Mx)= 2=q(x)=常数,M(x)为二次函数 ) q(x)向下,q(x)<0,<0,曲线上凸 dx2 反之,则下凹
文档格式:PPT 文档大小:40KB 文档页数:1
如果在x的某一去心邻域内f(x)≥0(或f(x)≤0),而且 f(x)→A(x→x),那么A≥0(或A≤0) 证明设在x的某一去心邻域内f(x)≥0. 假设上述论断不成立,即设A<0,那么由函数极限的 局部保号性就有x的某一去心邻域,在该邻域内f(x)<0,这 与f(x)≥0的假定矛盾.所以A≥0
文档格式:PPT 文档大小:1.22MB 文档页数:34
无穷小量的比较 定义3.3.1若limf(x)=0,则称当x→x时f(x)是无穷小量 x→x 无穷小量是以零为极限的变量。这里的极限过程x→x可以扩 充到x→x+、x-、∞、+∞、-∞0等情况
文档格式:PPT 文档大小:876.5KB 文档页数:29
无条件极值 定义12.6.1设D∈R为开区域,f(x)为定义在D上的函数, x=(x,x2,,x)D若存在x的邻域0(xo,r),使得 f(x)≥f(x)(或f(xo)≤f(x)),x∈O(xo,r), 则称x为f的极大值点(或极小值点);相应地,称f(xo)为相应的极 大值(或极小值);极大值点与极小值点统称为极值点,极大值与极 小值统称为极值
文档格式:PDF 文档大小:200.94KB 文档页数:37
1.平面图形的面积 定积分的应用,关键是把问题写成「f(x)bx的形式,这时关键是把f(x)dr=dF(x) 的意义搞清楚,这个观点称为微元法。 比如要求以x=a,x=b(a
文档格式:PDF 文档大小:223.6KB 文档页数:34
无穷小量的比较 定义3.3.1若limf(x)=0,则称当x→x时f(x)是无穷小量 x→x0 无穷小量是以零为极限的变量。这里的极限过程x→x可以扩 充到x→x+、x-、∞、+∞0、-∞等情况
文档格式:DOC 文档大小:161.5KB 文档页数:5
1.(补充习题)判断以下公式对是否可合一若可合一,则求出最一般的合一 (3)P(f(x),y),P(y,f(b)) 解:令O=,S={p(f(x),y),P(y,f(b))} ①差异集为{f(x),y},做替换{f(x)/y},则 1=0of(x)y}={f(x)/y} S1 =S, ={P((x), f (x), P( f(x),(b)); ②差异集为{x,b},做替换{b/x},则
文档格式:PPT 文档大小:213.5KB 文档页数:12
1.交通模型 考察在高速公路上行驶的交通车辆的流动问题.目的研究何 时发生交通堵塞及如何防止的问题.设x轴表示此公路,x轴 正方向车辆的前进方向. 先考虑连续模型.设u(t,x)表示时刻t的交通车辆按x方向分布 的密度,即在时刻t,位于区间段[x,x+dx]中的车辆数为 u(t,x)dx.再设 q(t,x) 为车辆通过x点的流通率,即在时段 [t,t+dt]内通过点x的车辆流量为取 q(t,x)dt
文档格式:PPT 文档大小:430KB 文档页数:15
第四章随机变量的数字特征 4-2方差 在实际问题中常关心随机变量与均值的 偏离程度,可用EX-EX|,但不方便;所以 通常用E(X-EX)2来度量随机变量X与其均 值EX的偏离程度。 1、定义 设X是随机变量,若E(X-EX)2存在,称其 为随机变量X的方差,记作DX,Var(X),即: DX=Var(X)=E(X-EX) 2.x称为标准差。 DX=E(X-E)2=(x-E)2p,离散型
文档格式:PPT 文档大小:888KB 文档页数:28
费马定理设函数f(x)在x的某邻域U(xo)上有定义, 并且在点x处可导,如果对任意x∈U(xo) 有f(x)≤f(xd),或f(x)f(xo 即在x取到极值,则f'(xo)=0 证明:不失一般性。设f(x)在点x=c取到最大值, 则f(x)≤f(c),x∈(a,b)
首页上页345678910下页末页
热门关键字
搜索一下,找到相关课件或文库资源 3733 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有