点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:1.24MB 文档页数:27
一、泰勒级数 上节例题∑(-1)-1=ln(1+x)(-1
文档格式:DOC 文档大小:263KB 文档页数:7
一关于极限 (1)用定义证明极限存在性 先考虑数列极限 用数列极限的定义证明数A是数列xn的极限:首先,把要证明的命题用定义的形式给
文档格式:PDF 文档大小:283.04KB 文档页数:46
数列与数列极限 数列是指按正整数编了号的一串数: xx x 1 2 n ,,,, \ \, 通常表示成{ xn },其中 xn称为该数列的通项
文档格式:PDF 文档大小:199.34KB 文档页数:25
从定义出发求导函数 一些简单的函数可以直接通过导数的定义来求导函数: 常数函数 y C= 的导数恒等于零。 例4.3.1 求 y x = sin 的导函数
文档格式:PDF 文档大小:240.67KB 文档页数:16
解析方法和数值方法 求方程 f x( ) = 0 的解(或根),就是要寻找一个数 x*,使得满足 0)( * xf = 。 求方程的解主要方法有两种:解析方法和数值方法
文档格式:PDF 文档大小:449.96KB 文档页数:53
Green 公式 设L为平面上的一条曲线,它的方程是 = + tytxt )()()( jir ,α ≤ t ≤ β 。 如果 α = rr β )()( ,而且当 ),(, tt 21 ∈ α β , 21 ≠ tt 时总成立 )()( 1 2 ≠ rr tt ,则称 L为简单闭曲线(或 Jordan 曲线)。这就是说,简单闭曲线除两个端 点相重合外,曲线自身不相交
文档格式:PDF 文档大小:340.11KB 文档页数:27
微元法 我们先回忆一下求曲边梯形面积S 的步骤:对区间[, ] a b 作划分 ax x x x b = 012 < < <\< n = , 然后在小区间 ],[ 1 ii xx − 中任取点ξ i ,并记 =Δ − iii −1 xxx ,这样就得到了小 曲边梯形面积的近似值 i ii Δ ≈ ξ )( ΔxfS 。最后,将所有的小曲边梯形面积 的近似值相加,再取极限,就得到
文档格式:PPT 文档大小:1.33MB 文档页数:41
含参变量反常积分的一致收敛 含参变量的反常积分也有两种:无穷区间上的含参变量反常积分 和无界函数的含参变量反常积分
文档格式:PPT 文档大小:1.55MB 文档页数:46
数列与数列极限 数列是指按正整数编了号的一串数: x1,x2,…,xn,, 通常表示成{xn},其中x称为该数列的通项
文档格式:PPT 文档大小:788.5KB 文档页数:16
求方程 f(x)=0 的解(或根),就是要寻找一个数x,使得满足 f(x)=0 求方程的解主要方法有两种:解析方法和数值方法
首页上页6061626364656667下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有