点击切换搜索课件文库搜索结果(8873)
文档格式:PDF 文档大小:240.67KB 文档页数:16
解析方法和数值方法 求方程 f x( ) = 0 的解(或根),就是要寻找一个数 x*,使得满足 0)( * xf = 。 求方程的解主要方法有两种:解析方法和数值方法
文档格式:PDF 文档大小:183.23KB 文档页数:20
带 Peano余项的Tay1or公式 定理5.3.1(带 Peano余项的 Taylor公式)设f(x)在x处有n阶 导数,则存在x的一个邻域,对于该邻域中的任一点x,成立
文档格式:PDF 文档大小:199.09KB 文档页数:22
我们将这种类型的极限称为待定型,简称型。 待定型极限除了型以外,还有型、0∞型、∞±∞型、∞型、 1型、0°型等几种。我们先讨论如何求型和型的极限,其余几 种类型的极限都可以化成这两种类型进行计算
文档格式:PDF 文档大小:217.4KB 文档页数:27
高阶导数的实际背景及定义 物体在时刻t的瞬时加速度为当t→0时,它的平均加速度的 △t 极限值,即
文档格式:PDF 文档大小:199.34KB 文档页数:25
从定义出发求导函数 一些简单的函数可以直接通过导数的定义来求导函数: 常数函数 y C= 的导数恒等于零。 例4.3.1 求 y x = sin 的导函数
文档格式:PDF 文档大小:136.39KB 文档页数:10
微分的定义 设 y fx = ( )是一个给定的函数, 在点 x 附近有定义。若 f x( )在 x 处的 自变量产生了某个增量Δx 变成了 x + Δx (增量Δx 可正可负,但不为 零),那么它的函数值也相应地产 生了一个增量 Δyx f x x f x () ( ) () = + Δ −
文档格式:PDF 文档大小:373.6KB 文档页数:55
函数极限的定义 在半径为 r 的圆上任取一小段圆弧,记它所对的圆心角的弧度为 2 x,则圆弧长度为 2 x r ,而圆弧所对的弦的长度为2 sin r x ,弦长与弧长 之比值 y 是 x的函数
文档格式:PDF 文档大小:283.04KB 文档页数:46
数列与数列极限 数列是指按正整数编了号的一串数: xx x 1 2 n ,,,, \ \, 通常表示成{ xn },其中 xn称为该数列的通项
文档格式:PDF 文档大小:405.99KB 文档页数:26
人们最熟悉的简单函数无非两类:幂函数和三角函数。英国数学 家 Taylor 在 18 世纪初找到了用幂函数的(无限)线性组合表示一般 函数 f x( )的方法,即通过 Taylor 展开将函数化成幂级数形式
文档格式:PDF 文档大小:249.35KB 文档页数:24
Fourier 变换及其逆变换 前面关于 Fourier 级数的论述都是对周期函数而言的,那么对于 非周期函数,又该如何处理呢? 在 +∞−∞ ),( 上可积的非周期函数 f x( )可以看成是周期函数的极限 情况,处理思路是这样的: (1) 先取 f x( )在[ ,] −T T 上的部分(即把它视为仅定义在[ ,] −T T 上 的函数),再以2T 为周期,将它延拓为 +∞−∞ ),( 上的周期函数 f x T ( );
首页上页642643644645646647648649下页末页
热门关键字
搜索一下,找到相关课件或文库资源 8873 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有