点击切换搜索课件文库搜索结果(6900)
文档格式:DOC 文档大小:399KB 文档页数:26
1.问题的提出 用插值的方法对这一函数进 行近似,要求所得到的插值多项式 经过已知的这n+1个插值节点; 在n比较大的情况下,插值多项式 往往是高次多项式,这也就容易出 现振荡现象(龙格现象),即虽然 在插值节点上没有误差,但在插值 节点之外插值误差变得很大,从 “整体”上看,插值逼近效果将变 得“很差”。于是,我们采用函数 逼近的方法
文档格式:DOC 文档大小:114KB 文档页数:4
在§4 看到,对于n级行列式,有
文档格式:DOC 文档大小:70.5KB 文档页数:3
下面利用行列式的性质给出一个计算行列式的方法. 在§3 我们看到,一个上三角形行列式
文档格式:DOC 文档大小:61KB 文档页数:2
行列式的计算是一个重要的问题,也是一个很复杂的问题. n 级行列式一共 有 n! 项,计算它就需做个乘法.当 n 较大时
文档格式:DOC 文档大小:64KB 文档页数:3
一、n级行列式的概念 在给出n级行列式的定义之前,先来看一下二级和三级行列式的定义
文档格式:DOC 文档大小:26.5KB 文档页数:1
一、排列的定义 定义 1 由 1,2,  ,n 组成的一个有序数组称为一个 n 级排列
文档格式:DOC 文档大小:350KB 文档页数:22
若首项系数an≠0的n次多项式 0n(x),满足 ≠k (0,9)=p(x),(x)(x)dx 2k=0,12…) 就称多项式序列9,1,…n,在 [a,b上带权p(x)正交,并称o,(x) 是[a,b上带权(x)的n次正交多项 式。 构造正交多项式的格拉姆一施密 特( Gram-Schmidt)方法 定理:按以下方式定义的多
文档格式:DOC 文档大小:234KB 文档页数:14
用均方误差最小作为度量标 准,研究函数f(x)∈Cab]的逼近多项 式,就是最佳平方逼近问题。 若存在P(x)∈H,使 f-Ppll -.[(x)-P:(x,dx=infllf-Ppl P\(x)就是f(x)在{ab]上的最佳平 方逼近多项式
文档格式:DOC 文档大小:260.5KB 文档页数:20
问题的提出: 上面讨论的分段低次插值函数 都有一致收敛性,但光滑 性较差,对于像高速飞机的机翼 形线,船体放样等型值线 往往要求有二阶光滑度,即有二 阶连续导数,早期工程师 制图时,把富有弹性的细长木条 (所谓样条)用压铁固定 在样点上,在其它地方让它自由 弯曲,然后画下长条的曲 线,称为样条曲线。它实际上是 由分段三次曲线并接而成,在连 接点即样点上要求二阶导数连
文档格式:DOC 文档大小:202KB 文档页数:5
到目前为止,我们始终是纯形式地讨论多项式,也就是把多项式看作形式表 达式.在这一节,将从另一个观点,即函数的观点来考察多项式
首页上页645646647648649650651652下页末页
热门关键字
搜索一下,找到相关课件或文库资源 6900 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有