点击切换搜索课件文库搜索结果(10032)
文档格式:PPT 文档大小:334KB 文档页数:10
微分的定义 设 y = f (x)是一个给定的函数, 在点x 附近有定义。若 f (x)在x 处的 自变量产生了某个增量x 变成了 x + x (增量x 可正可负,但不为 零),那么它的函数值也相应地产 生了一个增量 y(x) = f (x + x) − f (x), 在不会发生混淆的场合,或者是无需特别指明自变量的时候
文档格式:PPT 文档大小:876.5KB 文档页数:29
无条件极值 定义12.6.1设D∈R为开区域,f(x)为定义在D上的函数, x=(x,x2,,x)D若存在x的邻域0(xo,r),使得 f(x)≥f(x)(或f(xo)≤f(x)),x∈O(xo,r), 则称x为f的极大值点(或极小值点);相应地,称f(xo)为相应的极 大值(或极小值);极大值点与极小值点统称为极值点,极大值与极 小值统称为极值
文档格式:PDF 文档大小:304.32KB 文档页数:48
任意项级数 一个级数,如果只有有限个负项或有限个正项,都可以用正项级 数的各种判别法来判断它的收敛性。如果一个级数既有无限个正项, 又有无限个负项,那么正项级数的各种判别法不再适用。 这样的级数,即通项任意地可正或可负的级数,称为任意项级数
文档格式:PDF 文档大小:154.18KB 文档页数:13
数值积分 对于求定积分,虽然有了 Newton-Leibniz 公式,但在整个可积函 数类中,能够用初等函数表示不定积分的只占很小一部分,也就是说, 对绝大部分在理论上可积的函数,并不能用 Newton-Leibniz 公式求得 其定积分之值。 另一方面,在实际问题中,许多函数只是通过测量、试验等方法 给出了在若干个离散点上的函数值,如果问题的最后解决有赖于求出 这个函数在某个区间上的积分值,那么 Newton-Leibniz 公式是难有用 武之地的
文档格式:PDF 文档大小:136.39KB 文档页数:10
微分的定义 设 y fx = ( )是一个给定的函数, 在点 x 附近有定义。若 f x( )在 x 处的 自变量产生了某个增量Δx 变成了 x + Δx (增量Δx 可正可负,但不为 零),那么它的函数值也相应地产 生了一个增量 Δyx f x x f x () ( ) () = + Δ −
文档格式:PDF 文档大小:5.79MB 文档页数:380
本书系统地论述了辐射防护的基本内容。全书分三编,共九章。主要内容包括:电离辐射领域中常用的量及其单位;辐射对人体健康的影响和防护标准;辐射防护方法;剂量测量和辐射防护监测等。内容简明,概念清楚,为满足实际应用的需要,在主要部分都有例题,在书后附有较新的数据和图表。本书是为高等院较核物理和有关核技术应用专业编写的辐射防护课程的试用教材,也可供辐射防护、核技术应用、环境保护、放射卫生以及有关专业的科技人员和管理人员参考
文档格式:PDF 文档大小:322.17KB 文档页数:29
无条件极值 定义 12.6.1 设 D n ∈R 为开区域, f x)( 为定义在 D 上的函数, 0 x ),,,( 002 01 n = \ xxx ∈D。若存在 0 x 的邻域 ),( 0 x rO ,使得 )),()(()()( 0 0 ≥ 或 ≤ ffff xxxx x ∈ ),( 0 x rO , 则称 0 x 为 f 的极大值点(或极小值点);相应地,称 )( 0 f x 为相应的极 大值(或极小值);极大值点与极小值点统称为极值点,极大值与极 小值统称为极值
文档格式:DOC 文档大小:23.5KB 文档页数:1
一、概况 该厂日产 1000 吨,二班工作,年最大负荷利用小时 5000h。 二、电源 本厂距上级变电所 5 公里,短路容量
文档格式:DOC 文档大小:306.5KB 文档页数:7
定义3V是数域P上一个线性空间,f(a,B)是上一个二元函数,即对V 中任意两个向量a,B,根据f都唯一地对应于P中一个数f(a,B)如果f(a,) 有下列性质:
文档格式:DOC 文档大小:90.5KB 文档页数:2
一、 复系数多项式因式分解定理 代数基本定理 每个次数  1 的复系数多项式在复数域中有一个根. 利用根与一次因式的关系,代数基本定理可以等价地叙述为:
首页上页666667668669670671672673下页末页
热门关键字
搜索一下,找到相关课件或文库资源 10032 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有