点击切换搜索课件文库搜索结果(69)
文档格式:PPT 文档大小:4.26MB 文档页数:80
3.1.1 罗尔定理 3.1.2 拉格朗日中值定理 3.1.3 柯西中值定理 3.1.4 罗必达法则 3.2 函数性态的研究 3.2.1 函数单调性和极值 3.2.2 曲线的凹凸性与拐点 3.3 函数展为幂级数
文档格式:PPT 文档大小:3.03MB 文档页数:115
1拉格朗日定理和函数的单调性 2柯西中值定理及不定式极限 3泰勒公式 4函数的极值与最值 5函数的凹凸性与拐点 6函数图象的讨论
文档格式:PPT 文档大小:395KB 文档页数:18
Lagrange定理4y=f'(x+0x).4x给出了 函数在某区间上的增量与函数在区间内某点处的 导数之间的关系,为利用导数反过来研究函数的 性质或曲线的形态提供了一座桥梁。本节我们就 来讨论这方面的问题,主要介绍:单调性、极值 最值、凹凸、拐点和曲率
文档格式:PPT 文档大小:4.38MB 文档页数:160
第一节 中值定理 一、罗尔中值定理 二、拉格朗日中值定理 三、柯西中值定理 第二节 洛必达法则 第三节 泰勒(Taylor)定理 一、问题的提出 二、Pn和Rn的确定 三、泰勒中值定理 四、简单应用 第四节 函数单调性的判定法 一、单调性的判别法 二、单调区间求法 第五节 函数极值及其求法 一、函数极值的定义 二、函数极值的求法 第六节 最大值、最小值问题 一、最值的求法 二、应用举例 第七节 曲线的凹凸与拐点 一、曲线凹凸的定义 二、曲线凹凸的判定 三、曲线的拐点及其求法 第九节 曲率 一、弧微分 二、曲率及其计算公式 三、曲率圆与曲率半径
文档格式:PPT 文档大小:395KB 文档页数:18
单调性及其判定 Lagrange定理4y=f'(x+0x).4x给出了 函数在某区间上的增量与函数在区间内某点处的 导数之间的关系,为利用导数反过来研究函数的 性质或曲线的形态提供了一座桥梁。本节我们就 来讨论这方面的问题,主要介绍:单调性、极值 最值、凹凸、拐点和曲率
文档格式:PPT 文档大小:398KB 文档页数:18
Lagrange定理4y=f(x+0x).给出了 函数在某区间上的增量与函数在区间内某点处的 导数之间的关系,为利用导数反过来研究函数的 性质或曲线的形态提供了一座桥梁。本节我们就 来讨论这方面的问题,主要介绍:单调性、极值 最值、凹凸、拐点和曲率
文档格式:DOC 文档大小:303.5KB 文档页数:6
教学内容及教学过程 3.2剪力图和弯矩图 dx2dx 推论: dQ(x) 线 1、q(x)=0 =0,Q(x)=常量 'd'Mx) dx2=q(x)=0,M(x)为一次函数 d(x)=常数,Q(x)为一次函数 dx 2、q(x)=常数,Mx)= 2=q(x)=常数,M(x)为二次函数 ) q(x)向下,q(x)<0,<0,曲线上凸 dx2 反之,则下凹
文档格式:DOC 文档大小:18KB 文档页数:1
一、内容简介 以罗尔定理,拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整 个微分学的理论基础,尤其是拉格朗日中值定理.它们建立了函数值与导数值之 间的定量联系,因而可用中值定理通过导数去研究函数的性态;中值定理的主要 作用在于理论分析和证明;同时由柯西中值定理还可导出一个求极限的洛必达法 则.中值定理的应用主要是以中值定理为基础,应用导数判断函数上升、下降、 取极值、凹形、凸形和拐点等项的重要性态从而能把握住函数图象的各种几何 特征.此外,极值问题有重要的实际应用
文档格式:DOC 文档大小:18KB 文档页数:1
以罗尔定理,拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整 个微分学的理论基础,尤其是拉格朗日中值定理.它们建立了函数值与导数值之 间的定量联系,因而可用中值定理通过导数去研究函数的性态;中值定理的主要 作用在于理论分析和证明:同时由柯西中值定理还可导出一个求极限的洛必达法 则.中值定理的应用主要是以中值定理为基础,应用导数判断函数上升、下降 取极值、凹形、凸形和拐点等项的重要性态。从而能把握住函数图象的各种几何 特征.此外,极值问题有重要的实际应用
上页1234567
热门关键字
搜索一下,找到相关课件或文库资源 69 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有