点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:266.22KB 文档页数:33
多元函数 定义 11.2.1 设 D 是 n R 上的点集,D 到 R 的映射 f : D → R , x 6 z 称为 n 元函数,记为 z f = ( ) x 。这时,D 称为 f 的定义域, f ( ) D = { R | ( ), } z zf ∈ = ∈ xx D 称为 f 的值域,Γ= 1 {(,) R | ( ), } n z zf + x x ∈= ∈x D 称为 f 的图像
文档格式:DOC 文档大小:358KB 文档页数:8
2.7.刚体动力学的基本概念(参阅教材§4.4.-§4.9.) 1.刚体是一种特殊的质点系,质点系动力学的研究方法也适用于刚体,把动力学的三大定理 应用到刚体,所得结果就是111页(4.1.)(4.2.)和(4.3.)。由于刚体的自由度是6,三大 定理有七个方程,取其中六个方程就足以决定刚体的运动了。 鉴于刚体内部约束的特点(任意两质点间的距离保持不变),内力所作的功为零(证明见后) 动能定理(4.3)式已经得到化简;内势能一般取决于各对质点间的距离(而与相对的取向无关),因 而内势能也是常数,可以不予考虑(相当于调整计算势能的零点,使内势能为零) 刚体内力所作功为零的证明: F=F,F,是质点j作用于质点i的力,沿这两个质点的连线,满足F=-F 因而可表为F=n(-),(=):于是可计算成对内力所做的元功:
文档格式:PPT 文档大小:444.5KB 文档页数:13
一、原函数的定义 问题:若某一函数的导数为f(x),求这一个函数 设这函数为F(x),则 定义1设f(x)定义在区间上,若存在函数F(x),el,有 则称F(x)是已知函数f(x)在该区间上的一个原函数
文档格式:PPT 文档大小:281.5KB 文档页数:15
定义1:设X,Y是两个非空集合,若依照对应法则 f, 对X中的每个x,均存在Y中唯一的y与之对应,则称 这个对应法则 f 是从 X 到 Y 的一个映射, 记作 f: X→Y 或:设X,Y是两个非空集合,f是X×Y的子集,且 对任意x∈X,存在唯一的y ∈Y使(x,y) ∈ f,则f 是从 X 到 Y的一个映射
文档格式:DOC 文档大小:1.21MB 文档页数:30
选择题] 容易题1—36,中等题37—86,难题87117 1.积分中值定理f(x)dx=f(5)(b-a),其中()。 (A)ξ是[a,b内任一点 (B).5是[a,b]内必定存在的某一点 (C).5是[a,b]内唯一的某一点 (D).5是[a,b]的中点。 答B (t)dt 2.F(x)={0 x2,x≠0,其中f(x)在x=0处连续,且f(0)=0若F(x)在 c,x=0 x=0处连续,则c=() (A).c=0; (B).c=1; (C).c不存在; (D).c=-1. 答A
文档格式:PPT 文档大小:238KB 文档页数:41
前面主要讨论了由已知函数f(t)求它的象函数 F(s),但在实际应用中常会碰到与此相反的问 题,即已知象函数F(s)求它的象原函数f(t).本 节就来解决这个问题. 由拉氏变换的概念可知,函数f(t)的拉氏变换, 实际上就是f(tu(t)e-的傅氏变换
文档格式:PPT 文档大小:217KB 文档页数:37
卷积定理与相关函数 卷积的概念 若已知函数f(),f2(t),则积分 称为函数f()与f()的卷积,记为f(+f(t)
文档格式:PDF 文档大小:83.85KB 文档页数:13
3.1连续和间断 定义∫(x)定义在(ab),x0∈(ab),若mf(x)→>f(x),则称函数f(x)在 点x连续,x0称为连续点,否则称x为间断点 函数∫(x)在x∈(a,b)连续也可用E-6语言来叙述:∫(x)定义于(a,b),x0∈(a,b) 若E>0,38>0,使得当x∈(ab)且x-x∫(xo+0)且 f(x0-0)=f(x0)=f(x0+0), 即如果∫(x)在x左右极限都存在,且等于该点函数值,称∫(x)在该点连续
文档格式:PDF 文档大小:148.83KB 文档页数:17
5.1不定积分与原函数 5.1.1不定积分与原函数的定义 定义5.1f(x)是定义在区间∈R上的函数,若存在定义在1上的可导函数F(x),使得F(x)=f(x),Vx∈,则称F(x)为f(x)在上的一个原函数
文档格式:DOC 文档大小:300.5KB 文档页数:3
1、根据以下条件,判断力F在什么平面上? (1)Fx=0,mx(F)≠0;(2)Fx≠0,mx(F)=0; (3)Fx=0,m(F)=0;(4)m(F)=0,my(F)=0
首页上页4567891011下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有