点击切换搜索课件文库搜索结果(883)
文档格式:PDF 文档大小:3.55MB 文档页数:148
第1章 行列式 第2章矩阵及其运算 第3章 向量与线性方程组 第4章 特征值与特征向量 第5章 二次型
文档格式:PPT 文档大小:725KB 文档页数:30
一、欧氏空间的定义 二、欧氏空间中向量的长度 三、欧氏空间中向量的夹角 四、n维欧氏空间中内积的矩阵表示 五、欧氏子空间
文档格式:DOC 文档大小:66.5KB 文档页数:2
定义6设A是线性空间V的一个线性变换,的全体像组成的集合称为 的值域,用AV表示所有被A变成零向量的向量组成的集合称为A的核,用 A-(0)表示 若用集合的记号则AV={A55∈V},a-(0)={A5=0,5∈V} 线性变换的值域与核都是V的子空间 AV的维数称为A的秩,A-(0)的维数称为A的零度
文档格式:DOC 文档大小:50.5KB 文档页数:2
定理7设A是n维线性空间V的一个线性变换A的矩阵可以在某一基下为 对角矩阵的充要条件是A有n个线性无关的特征向量. 定理8属于不同特征值的特征向量是线性无关的 推论1如果在n维线性空间V中,线性变换的特征多项式在数域P中有n 个不同的根,即A有n个不同的特征值,那么A某组基下的矩阵是对角形的 推论2在复数上的线性空间中,如果线性变换A的特征多项式没有重根
文档格式:PPT 文档大小:401.5KB 文档页数:15
一、内容小结 1. 正交矩阵的定义与性质 3. 相似矩阵的定义与性质 4. 矩阵可对角化的条件 2. 特征值特征向量的定义与性质 5. 实对称矩阵特征值特征向量的性质
文档格式:DOC 文档大小:162KB 文档页数:2
4.2.7线性空间关于一个子空间的同余关系 定义给定K上的线性空间V,M是V的子空间,设a是V的一个向量。如果V的 一个向量a'满足:a-a∈M,则称a'与a模M同余,记作a'=a(modM) 易见,同余关系是V上的一个等价关系
文档格式:PPT 文档大小:190KB 文档页数:3
一、对称矩阵的性质 定理 对称矩阵的互异特征值对应的特征向量正交.定理 若n阶对称阵A的任 重特征值 对应的线性无关的特征向量恰有 个.
文档格式:PPT 文档大小:1.8MB 文档页数:118
第五章 欧氏空间 第六章 线性变换 第七章 二次型与二次曲面二次型及其标准形 正定二次型线性变换的概念 线性变换和矩阵 特征值与特征向量 线性变换的不变子空间,象与核 内积 , 欧氏空间Rn 标准正交基 向量积与混合积 R 中直角坐标系下直线与平面方程 空间曲面, 空间曲线及其方程
文档格式:DOC 文档大小:287.5KB 文档页数:4
3.1.1平行四边形的有向面积和平行六面体的有向体积具有的三条性质 在解析几何中已证明,给定二维向量空间中的单位正交标架,设向量a,B的坐标分别 为(a1,a2)和(b,b2),则由向量a,B张成的平行四边形的有向面积为ab2-a2b,这里记 为;给定三维空间内右手单位正交标架,设向量a,B,y的坐标分别为(a1,a2,a3) (b1,b2,b3)和(1,C2,C3),则由向量a,B,y张成的平行六面体的有向体积为 (ab2-a2b1)c1+(a3b1-ab3)c2+(ab2-a2b1)C3
文档格式:DOC 文档大小:287.5KB 文档页数:4
第三章3-1,3-2n阶方阵的行列式 3.1.1平行四边形的有向面积和平行六面体的有向体积具有的三条性质 在解析几何中已证明,给定二维向量空间中的单位正交标架,设向量a,B的坐标分别 为(a1,a2)和(b,b2),则由向量a,B张成的平行四边形的有向面积为ab2-a2b,这里记 为;给定三维空间内右手单位正交标架,设向量a,B,y的坐标分别为(a1,a2,a3) (b1,b2,b3)和(1,C2,C3),则由向量a,B,y张成的平行六面体的有向体积为 (ab2-a2b1)c1+(a3b1-ab3)c2+(ab2-a2b1)C3
首页上页7576777879808182下页末页
热门关键字
搜索一下,找到相关课件或文库资源 883 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有