点击切换搜索课件文库搜索结果(853)
文档格式:PPT 文档大小:240KB 文档页数:20
创立(17世纪):Newton(力学)Leibniz(几何) (无穷小) 严格化(19世纪): Cauchy, Riemann, Weierstrass (极限理论(ε-N, ε-δ语言),实数理论) 外微分形式(20世纪初):Grassmann, Poincare, Cartan (微积分基本定理如何在高维空间得到体现)
文档格式:PPT 文档大小:643KB 文档页数:22
(1)当 时,函数 ( ) 及 ( ) 都趋于零;设x → a f x F x 定理 定义 这种在一定条件下通过分子分母分别求导再 求极限来确定未定式的值的方法称为洛必达法则
文档格式:PDF 文档大小:287.26KB 文档页数:56
偏导数 定义 12.1.1 设 D⊂ 2 R 为开集, z f xy xy = ( , ), ( , )∈ D 是定义在 D 上的二元函数, ),( 00 yx ∈D 为一定点。如果存在极限
文档格式:DOC 文档大小:15KB 文档页数:1
切比雪夫.Ⅱ.J(1821~1894) 俄国数学家,机械学家.1821年5月生于奥卡托瓦,1894年 12 月卒于彼得堡.1841年毕业于莫斯科大学,1849年获博士学 位,1847~1882年在彼得堡大学任教,1850年成为教 授.1859 年当选为彼得堡科学院院士,他还是许多国家科学院的外籍 院士和学术团体成员,1890年获法国荣誉团勋章. 在概率论方面切比雪夫建立了证明极限定理的新方法一矩 法,用十分初等的方法证明了一般形式的大数律,研究了独 立随机变量和函数收敛条件
文档格式:PPT 文档大小:43KB 文档页数:1
定理1 设函数f(x)和g(x)在点x连续,则函数 f(x)±g(x,f(x)g(x), f(x) (当g(x)≠0时) 在点x也连续. 证明f(x)±g(x)的连续性: 因为f(x)和g(x)在点x,连续,所以它们在点x有定义, 从而f(x)g(x)在点x也有定义,再由连续性定义和极限运 算法则,有
文档格式:PDF 文档大小:180.41KB 文档页数:15
一、基本概念 1.设函数f定义在无穷区间[a,+∞)上,且在任何有限区间[a,u]上可积,如果存在极限
文档格式:PPT 文档大小:1.28MB 文档页数:34
黎曼积分的性质 设Ω为R3中的可度量的几何形体,这就是说,黎曼积分应具有一些极限所具有的性质
文档格式:DOC 文档大小:484.5KB 文档页数:11
二元函数的极值、最值 10极值定义P208 f(x、y)sf(xo、yof(xo、yo为极大值 f(x、y)≥f(xo、yo)f(xo、y)为极小值 f(x、y(x、yo有极限值→
文档格式:DOC 文档大小:723KB 文档页数:12
第四章一元函数微分学的应用 第一节柯西( Cauchy)中值定理与洛必达(L'Hospital)法则 思考题: 1.用洛必达法则求极限时应注意什么? 答:应注意洛必达法则的三个条件必须同时满足 2.把柯西中值定理中的“f(x)与F(x)在闭间区[,b]上连续”换成“f(x)与F(x) 在开区间(a,b)内连续”后,柯西中值定理的结论是否还成立?试举例(只需画出函数图 象)说明 y 答:不成立
文档格式:PPT 文档大小:969.5KB 文档页数:47
Tavlor公式 多项式是一类很重要的函数,其明显特点是结构 简单,因此无论是数值计算还是理论分析都比较方便 从计算的角度看,只须加、减、乘三种运算,连除法 都不需要,这是其它函数所不具备的优点。 用多项式近似地表示给定函数的问题不仅具有实 用价值,而且更具有理论价值。一般的函数不好处理 先用较好处理的多项式近似替代,然后通过某种极限 手续再过渡到一般的函数
首页上页7980818283848586下页末页
热门关键字
搜索一下,找到相关课件或文库资源 853 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有