点击切换搜索课件文库搜索结果(1189)
文档格式:DOC 文档大小:254.5KB 文档页数:3
第五章5-1双线性函数 5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足 f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V 到K的一个线性函数(即f为V到K的一个线性映射) 如同一般的线性映射,有以下事实: i)、f:V→K是线性函数当且仅当f(ka+1B)=kf(a)+lf(B) i)、f(0)=0; i)、f(-a)=-f(a) 命题数域K上的n维线性空间V上的线性函数的全体关于函数加法和数乘构成K上 的n维线性空间
文档格式:DOC 文档大小:197.5KB 文档页数:2
第四章4-4特征值与特征向量(续) 4.4.2关于特征向量与特征子空间的一些性质 命题线性变换的属于不同特征值的特征向量线性无关。 证明设A为VK上的线性变换,,2,是两两不同的特征值,(1≤i≤t)是 属于特征子空间V的特征向量,设k,k2,k,∈K,使得k5+k252+…+k5=0,两 边用A作用(i=1,2,…,-1),于是得到方程组 5+52++=0,j0,1,t-1 其中入的方幂组成的矩阵为
文档格式:DOC 文档大小:77.5KB 文档页数:1
第四章4-4线性变换的特征值与特征向量 4.4.1线性变换的特征值与特征向量的定义 定义若存在非零向量ξ∈V,使得对于某个∈K,有A5=5,则称ξ是A的属 于特征值λ的特征向量。 命题线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间。 证明设51,52是属于的特征向量,Vk,∈K,则 A(k5+2)=k()+a(2)=k+2=(k5+152), 证毕。 定义线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间称 为属于特征值的特征子空间,记为V 4.4.2特征值和特征子空间的计算、特征多项式
文档格式:DOC 文档大小:162KB 文档页数:2
4.2.7线性空间关于一个子空间的同余关系 定义给定K上的线性空间V,M是V的子空间,设a是V的一个向量。如果V的 一个向量a'满足:a-a∈M,则称a'与a模M同余,记作a'=a(modM) 易见,同余关系是V上的一个等价关系。 把全部等价类组成的集合(一个等价类视为等价类集合中的一个元素)记为V/M, V/M中的元素形如 a+m={a+luM}, 我们称a+M为一个模M的同余类,而将等价类中的任一元素称为等价类的代表元素。 命题同余类满足如下一些性质:
文档格式:DOC 文档大小:162KB 文档页数:2
第四章4-2子空间与商空间 4.2.4子空间的直和与直和的四个等价定义 定义设V是数域K上的线性空间,2…,是V的有限为子空间。若对于 ∑中任一向量,表达式 a=a1+a2+…+am,a1e,i=12,m 是唯一的,则称∑V为直和,记为 1 v⊕或V 定理设V12,…,Vn为数域K上的线性空间V上的有限为子空间,则下述四条等
文档格式:DOC 文档大小:537.5KB 文档页数:6
第九章元多项式环 9-1一元多项式环的基本理论 911域上的一元多项式环的定义 定义91设K是一个数域,x是一个不定元。下面的形式表达式 f(x) (其中an3a1,a2属于K,且仅有有限个不是0)称为数域K上的一个不定元x的一元多 式。数域K上一个不定元x的多项式的全体记作K[x] 下面定义K[x]内加法、乘法如下 加法设
文档格式:DOC 文档大小:560.5KB 文档页数:7
9.2.2Qx]内多项式的因式分解 定义9.12定义Z[x]={axn+a1x+…+∈Z,i=01n}。 假设f(x)∈Z[x],f(x)≠0及±1。如果g(x)h(x)∈[x],使得f(x)=g(x)h(x), 且g(x)≠±1,h(x)≠±1,则称f(x)在Z[x]内可约,否则称f(x)在Z[x]内不可约 定义9.13设 f(x)=ax+axn+…+an∈Z[x], 这里n≥1。如果(aa1an)=1,则称f(x)是一个本原多项式。 命题Q[x]内一个非零多项式f(x)可以表成一个有理数k和一个本原多项式f(x)的
文档格式:DOC 文档大小:434KB 文档页数:4
9.1.7用形式微商判断多项式是否有重因式 定义9.10设f(x)=ax+a1x+…+an-1x+an∈K[x],定义 f\(x)=na\+(n-1)\-+..+[], 称f(x)为f(x)的一阶形式微商。 设f(x)的k-1阶形式微商已定义,记作f((x)则定义它的k阶形式微商fx)为 f(x)的一阶形式微商:f((x)=(f((x)另外我们约定f(x)=f(x) 命题设f(x)∈K[x],如果K[x]内的不可约多项式p(x)是f(x)的k重因式,则 p(x)是f(x)的k-1重因式
文档格式:DOC 文档大小:188.5KB 文档页数:4
4.1.4线性空间的基变换,基的过渡矩阵 设VK是n维线性空间,设1,E2,…n和2,…,n是两组基,且 (=+++, n2=121+22+…+n2n (nn =tne1 +tn2++ 将其写成矩阵形式 112…ㄣn t21 (n2,n)=(1,2n2122n, :: nn2…tm 定义.11我们称矩阵 (2…n t2122…t2 T=:: Imt In2 为从2n到2的过渡矩阵
文档格式:PDF 文档大小:1.33MB 文档页数:239
(一)理论课程 1《空间解析几何》 2《离散数学》 3《时间序列分析》 4《数值计算方法》 5《运筹与优化》 6《Python 程序设计》 7《常微分方程》 8《大数据技术原理及应用》 9《复变函数论》 10《概率统计》 11《高等代数》 12《面向对象程序设计》 13《数据结构与算法》 14《数据库原理及应用》 15《数据挖掘》 16《数理统计》 17《数学分析(1)》 18《数学分析(2)》 19《数学建模(1)》 20《数学建模(2)》 21《数学软件及应用》 (二)实验课程 22《时间序列分析》 23《数据结构与算法》 24《数学软件及应用》 25《数值计算方法》 26《Python 程序设计》 27《大数据技术原理及应用》实验 28《面向对象程序设计》 29《数据库原理及应用》课程 30《数据挖掘》 31《数理统计》 (三)实践课程 32《专业教育》 33《web 数据挖掘与电子商务项目实训》 34《技能实训》教学大纲 35《客户数据分析项目设计》 36《数学建模(1)》 37《数学建模(2)》 38《中文文本数据挖掘项目实训》 39《综合项目实训》教学大纲 40《毕业设计(论文)》教学大纲 41《毕业实习》教学大纲
首页上页8182838485868788下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1189 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有