点击切换搜索课件文库搜索结果(898)
文档格式:PDF 文档大小:9.12MB 文档页数:771
第 1 章 简介 1-1 第 2 章 CPU 2-1 第 3 章 数据存储器 3-1 第 4 章 程序存储器 4-1 第 5 章 闪存和 EEPROM 编程 5-1 第 6 章 复位中断 6-1 第 7 章 振荡器 7-1 第 8 章 复位 8-1 第 9 章 低压检测 (LVD) 9-1 第 10 章 看门狗定时器和低功耗模式 10-1 第 11 章 I/O 端口 11-1 第 12 章 定时器 12-1 第 13 章 输入捕捉 13-1 第 14 章 输出比较 14-1 第 15 章 电机控制 PWM 15-1 第 16 章 正交编码器接口 (QEI) 16-1 第 17 章 10 位 A/D 转换器 17-1 第 18 章 12 位 A/D 转换器 18-1 第 19 章 UART 19-1 第 20 章 串行外设接口 (SPITM) 20-1 第 21 章 I2CTM 模块 21-1 第 22 章 数据转换器接口 (DCI) 22-1 第 23 章 CAN 模块 23-1 第 24 章 器件配置 24-1 第 25 章 开发工具支持 25-1 第 26 章 附录 26-1
文档格式:PDF 文档大小:977.03KB 文档页数:7
对我国某高硅低品位镍磁黄铁矿进行直接酸浸、焙烧——酸浸和细菌浸出比较,并考察硫酸用量及氧化亚铁硫杆菌对浸出率的影响.以稻壳为硫酸盐还原菌固定化载体构建连续上升流固定填充床反应器,以连续上升流方式处理浸出液.结果表明:焙烧使矿物发生烧结,镍被包裹,不利于浸出;细菌浸出Ni2+浸出率为92.16%,质量浓度可达973.22 mg·L-1·T·f.菌在矿物表面形成生物膜,直接与矿物发生作用使矿物溶解,将浸液中Fe2+氧化为Fe3+,Fe3+进一步溶解矿物·浸出液以2200~3600 mL·L-1·d-1的速率经过反应器,Ni2+以NiS的形式吸附于稻壳上,回收率在98%以上,使原矿中NiO质量分数由1.69%上升至稻壳中的11.84%.浸液中98%的Mg2+留在溶液中,利于金属分离
文档格式:PDF 文档大小:307.19KB 文档页数:5
对宣化钢铁公司石灰厂所用的石灰石的分解过程进行了动力学研究.以升温速率分别为10、15、20、25和30℃/min的方式将过200目筛子的石灰石粉末加热到1000℃,通过测量其热重曲线,得出分解过程的机理方程为F(α)=(1-α)-1;所用碳酸钙的热分解反应的速率常数为$k=54325{{\\rm{e}}^{-\\frac{{98873}}{{RT}}}}$.通过对(0.02 m×0.02 m×0.02 m)的石灰石样品在1223、1323和1423 K进行的分解实验,确定了CO2在该石灰石生成CaO过程中的扩散系数和温度的关系为$\\lg D=-\\frac{{2506}}{T}+2.28$,得到了石灰石分解的动力学模型,并用此模型作了预测,与实际吻合较好
文档格式:PDF 文档大小:624.99KB 文档页数:7
本文根据文献热力学数据,导出了反应;[Mg]%F0+[O]%=MgO(s)的标准自由能变化ΔG°=-505009+145.03T,J.mol-1(1780 ≤ T ≤ 2000°k)进而用热力学分析了GH36合金在含MgO或MgF2渣系中电渣重熔合金中Si、Mn等成分对产生或保持合金中含有 ≥ 0.0020Wt%Mg的不可能性,提出了含Mg的GH36A合金电渣重熔时自耗电极中含有少量Al的必要性。研究了原始Al含量([Al]0)、原始Mg含量([Mg]0)以及熔渣成分对锭中Mg含量[Mg]的影响。当渣池温度为1690±10℃,0.32 ≤ [Al]0 ≤ 0.62Wt%,0.0035 ≤ [Mg]0 ≤ 0.0140Wt%,熔渣成分为0.10 ≤ NMgO ≤ 0.30,0.05 ≤ NAl2O3 ≤ 0.21,NCaO ≤ 0.15范围,建立了GH36A合金电渣重熔控制[Mg]的关系式。研究发现,含有适量的Mg、Al的GH36A合金可大幅度地提高合金在650℃,372.65×106Pa的缺口、光滑持久寿命,消除合金缺口敏感性
文档格式:PDF 文档大小:1.46MB 文档页数:12
基于ANSYS软件建立了310 mm×360 mm断面大方坯连铸过程二维凝固传热数学模型,并采用窄面射钉试验及铸坯表面测温试验对模型的准确性进行了验证.通过模型研究了过热度、拉速和二冷比水量对铸坯中心固相率以及凝固坯壳分布的影响,并结合高碳耐磨球钢BU的高温拉伸试验结果,确定了最佳的拉速以及最优轻压下压下区间要求.通过工业试验对理论模型进行了验证,并分析研究了拉速对采用凝固末端电磁搅拌(F-EMS)以及凝固末端17 mm大压下量的轻压下技术生产310 mm×360 mm断面大方坯高碳耐磨球钢BU铸坯的偏析和中心缩孔的影响.结果表明:采用凝固末端电磁搅拌和轻压下复合技术,通过调整拉速优先满足轻压下压下区间要求,可显著降低中心偏析、V型偏析及中心缩孔,但如果仅达到凝固末端电磁搅拌位置要求时,则铸坯中心质量不会得到明显改善.拉速为0.52 m·min-1且轻压下压下区间铸坯中心固相率为0.30~0.75时,偏析和中心缩孔有很大程度的改善,不合理的压下量分配会引起铸坯出现内裂纹以及中心负偏析
文档格式:PDF 文档大小:1.15MB 文档页数:12
本工作试验成功了一种测量压扁孤长的新方法——接触法。它能在正常轧制变形条件下精确地测量总孤长l'以及轧辊联心线前、后的分段长度x1与x0。在干轧与菜籽油润滑轧制合金铝、08F、20#钢与1Cr18Ni9Ti四种材料的条件下,实测了l',x1与x0值。对比实验结果分析了Hitchcock、Ford、Roberts与Целиков等四个l'的理论公式。证实了Hitchcock公式存在一个随压下率ε减小而增大的、偏低的系统误差。发现了理论公式计算孤长的误差主要集中在x0部分,从而指明了提高理论解精度的关键在于校正此部分的计算。选定\在采用弹性理论计算轧辊与轧件弹性位移量的基础上、根据几何关系确定孤长的方程结构,统计分析实验数据估计x0部分校正因子\的方案,建立了较精确的压扁孤长数学模型
文档格式:PDF 文档大小:1.83MB 文档页数:7
采用一种简便、快速和低温的水热法制备了超级电容器用MnO2微纳米球和微米棒粉体颗粒,并用正交试验和单因素实验对其制备工艺进行了优化。通过X射线衍射、扫描电镜和电化学测试,研究了所得材料的晶体结构、表面形貌和超电容性能.最佳合成工艺条件为:反应温度150℃,KMnO4/MnCl2摩尔比2.5:1.0,反应时间3h,填充率40%。该工艺下所制的样品为α-MnO2,且呈现出空心、表面多孔的微纳米球和微米棒形貌.微纳米球的直径约为0.2-0.8μm,微米棒的直径约为30nm、长约为5μm.在此条件下,所得样品在100、150、200、250和300mA·g-1电流密度下,第5次的放电比电容分别为255、170、133、105和88F·g-1,其等效串联电阻和电荷转移电阻分别为0.37和0.40Ω
文档格式:PDF 文档大小:20.89MB 文档页数:9
利用染料示踪法,采用波高传感器和旋桨式流速仪在全比例水模型中研究了四种浸入式水口(A型:凹型,15°(上角度)-15°(下角度);B型:凸型,15°-15°;C型:凹型,40°-15°,D型:凸型,40°-15°)下板坯连铸结晶器内的流场和液面特征.发现采用凹型水口时结晶器液面的波动与表面流速均小于凸型水口.凹型水口F的表面流速变化的功率(频率为0.03~0.1Hz)比凸型水口小约50%,所以凹型水口更有利于减少结晶器内卷渣的发生.在高拉速条件下(拉速为1.8m·min-1,较大的水口出口上角度有利于抑制水口出口流股的漩涡流,进而减少剪切卷渣的发生.四种水口中C型水口条件下结晶器液面的表面流速最小,约为0.27m·s-1,为提高拉速留有较大余地,所以适合高拉速连铸的最佳浸入式水口为C型
文档格式:PDF 文档大小:749.31KB 文档页数:5
为了研究性能稳定的低碳钢板坯连铸用无氟保护渣,在测试传统的板坯连铸用高氟保护渣(F- ≥ 3%)性能的基础上,采用单纯形法,设计了CaO-SiO2-Al2O3-Fe2O3-MgO-Li2O-TiO2-Na2O-MnO-B2O3渣系中满足保护渣组成条件的基本实验点.通过逐步固定各组分含量,将多维空间的渣系组成转化为二维平面网格.测试无氟渣样的熔点、黏度、转折温度、玻璃体比例及转折温度时的黏度,并作性能与组成关系的等值线图.通过比较高氟保护渣和无氟渣样性能,确定了碱度、熔点、黏度、转折温度较低,且凝固后呈玻璃体的低碳钢板坯连铸用无氟保护渣的三个生成区域,其中之一的典型成分的质量分数范围是:CaO 31.2%,SiO2 36.8%,Al2O3 3%,Fe2O3 1%,MgO 2%,Li2O 2%,TiO2 6%,Na2O 7%~12%,MnO 3%~8%,B2O3 0~3%
文档格式:PDF 文档大小:7.91MB 文档页数:83
第一部分 ICETEK–VC5509-AE 评估板硬件使用指导 第一章 ICETEK–VC5509-AE 评估板技术指标. 第二章 ICETEK–VC5509-AE 原理图和实物图 . 第三章 接插件位置和拨档开关设置. 第四章 二次开发扩展总线(P1,P2,P3,P4)的定义与应用 第五章 TMS320VC5509 的存储空间和评估板的存储器映射 第六章 ICETEK–VC5509-AE评估板 I/O 寄存器的设计和使用. 第二部分 ICETEK-VC5509-AE 教学系统软件使用指导 实验设备安装 一.开发环境 . 二.ICETEK-DSP 教学实验箱的硬件连接 . 三.构造 DSP 开发软件环境 . 四.启动和设置 CCS 一.CCS 软件应用实验 实验 1 :Code Composer Studio 入门 . 实验 2 :编写一个以 C 语言为基础的 DSP 程序 . 实验 3 :编写一个以汇编(ASM)语言为基础的 DSP 程序 实验 4 :编写一个汇编和 C 混合的 DSP 程序 . 二.基于 DSP 芯片的实验 . 实验 :DSP 数据存取实验 三.基于 DSP 系统的实验 . 实验 :指示灯实验 . 实验 :拨码开关控制实验 . 第三部分 ICETEK-VC5509-AE 教学实验指导 . 实验 :单路,多路模数转换(AD) . 实验 :外中断 . 实验 :DSP 的定时器
首页上页8384858687888990下页末页
热门关键字
搜索一下,找到相关课件或文库资源 898 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有