点击切换搜索课件文库搜索结果(98)
文档格式:PPT 文档大小:899.5KB 文档页数:34
微分中值定理包括罗尔定理、拉格朗日中值定理、柯西中值定理 一.罗尔(Rolle)定理 定理1(罗尔定理)设函数f(x)满足下列条件: (1)在闭区间[a,b]上连续; (2)在开区间(a,b)上可导; (3)f(a)=f(b);
文档格式:PPT 文档大小:189KB 文档页数:6
由第一章知:显函数y=f(x),也可写成F(x,y =y-f(x)=0.由方程F(x,y)=0确定的隐函数可能 有两种情形:y是x的函数y=f(x)或x是y的函 数x=(y);但并非所有隐函数都可化为一个显函 数.如y-esy+x2y2=0. 因而有必要研究隐函数的求导方法,下面通过几个例子来介绍
文档格式:PPT 文档大小:430KB 文档页数:17
问题:根据极限的定义,只能验证某个常数A 是否为某个函数f(x的极限,而不能求出函数f(x的 极限.为了解决极限的计算问题,下面介绍极限的运 算法则;并利用这些法则和§2.1及22中的某些结 论来求函数极限
文档格式:PPT 文档大小:1.16MB 文档页数:38
一.在直角坐标下计算三重积分 二.在柱面坐标下计算三重积分 三.在球面坐标下计算三重积分 四.利用区域的对称性和函数的奇偶性计算三重积分
文档格式:PPT 文档大小:1.03MB 文档页数:37
定积分的换元法 上一节我们建立了积分学两类基本问题 之间的联系微积分基本公式,利用这 个公式计算定积分的关键是求出不定积分 ,而换元法和分部积分法是求不定积分的 两种基本方法,如果能把这两种方法直接 应用到定积分的计算,相信定能使得定积 分的计算简化,下面我们就来建立定积分 的换元积分公式和分部积分公式
文档格式:PPT 文档大小:1.03MB 文档页数:37
定积分的换元法 上一节我们建立了积分学两类基本问题 之间的联系—微积分基本公式,利用这 个公式计算定积分的关键是求出不定积分 ,而换元法和分部积分法是求不定积分的 两种基本方法,如果能把这两种方法直接 应用到定积分的计算,相信定能使得定积 分的计算简化,下面我们就来建立定积分 的换元积分公式和分部积分公式
文档格式:DOC 文档大小:384KB 文档页数:8
1:若方程y+p(x)y=0的一个特解为y=cos2x则该方程满足初值条件y(0)=2的 特解为() A cos 2x+2 B cos 2x+1 C2 coS x cos 2X 答案D 解:将y=cos2x代入方程求出函数p(x)再求解方程得到正确答案为D.也可以作 如下分析一阶线性齐次方程 y+p(x)y=0任意两个解只差一个常数因子所以A,B,C三个选项都不是该方程的解 2微分方程“卫
文档格式:DOC 文档大小:471.5KB 文档页数:8
5-6-1场论初步:三场与三度 5-6-1三场:无旋场、无源场和调和场 5-6-2三度算子在柱、球坐标系下的表示 第二十一讲三场与三度 课后作业: 课后作业: 阅读:第五章第六节:无源场和保守场pp.182--187 预习:第六章第一节:无源场和保守场pp.182-187 作业:习题6:pp.187--188:1;2;3,(2);4,(2);8;9. 5-6场论初步:三场与三度 56-1三个曲型场
文档格式:DOC 文档大小:696KB 文档页数:6
第六节含参变量的积分 4-6-2广义含参积分 第十六讲广义含参变量积分 课后作业: 阅读:第四章第六节:含参变量积分pp.13--141 预习:第五章第一节:曲线积分pp.142--151 作业 1.证明下列积分在参变量的指定区间上一致收敛 ()xe-dx(as≤b)
文档格式:DOC 文档大小:697.5KB 文档页数:9
4-3三重积分的计算 4-3-1三重积分在直角坐标系下的计算 4-3-2三重积分在柱坐标系下的计算 4-3-3三重积分在球坐标系下的计算 4-3-4三重积分在一般坐标系下的计算 第十三讲三重积的计算 课后作业: 阅读:第四章第四节三重积分的计算pp114-123 预习 第五节曲面面积和曲面积分pp125-134
首页上页345678910下页末页
热门关键字
搜索一下,找到相关课件或文库资源 98 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有