点击切换搜索课件文库搜索结果(185)
文档格式:DOC 文档大小:586KB 文档页数:9
第六章常微分方程 6-3高阶线性方程 6-3-1高阶线性常系数方程的解 6-3-2 Euler方程 第二十三讲高阶线性常系数阶线性方程 6-3-1高阶线性常系数齐次方程的解 考察n阶线性常系数齐次方程 d x dx d +am+.+ax=o dr dt d t 其中a1,an为实常数 或记成 L(Dx=o 由上一段的讨论知道方程L(Dx=0在区间(-∞,+∞)有n个线性无关解
文档格式:DOC 文档大小:384KB 文档页数:8
1:若方程y+p(x)y=0的一个特解为y=cos2x则该方程满足初值条件y(0)=2的 特解为() A cos 2x+2 B cos 2x+1 C2 coS x cos 2X 答案D 解:将y=cos2x代入方程求出函数p(x)再求解方程得到正确答案为D.也可以作 如下分析一阶线性齐次方程 y+p(x)y=0任意两个解只差一个常数因子所以A,B,C三个选项都不是该方程的解 2微分方程“卫
文档格式:DOC 文档大小:338KB 文档页数:8
第十八讲 Newton- Leibniz公式与定积分的计算 课后作业: 阅读:第七章74:256-262;75:pp263-268; 预习:76:pp269--285;77:p.288-295 练习pp262-263:习题74 复习题全部习题1,(1),(2);2,(1);3,单数题号 51),(2 pp.268-269:习题75 习题1、1)(2)(3)(5)(6);2,(1)(2)(3)(5),(7); 3,(1)(2) 作业pp262--263:习题74 习题13,(4);2,(2);3,双数题号;5(3),(4) pp268-269:习题7.5
文档格式:DOC 文档大小:361.5KB 文档页数:9
第十九讲定积分的应用 课后作业: 阅读:第七章7.6:pp269-285;7.7:pp.288-295 预习:78:pp.296-310 练习pp286--287:习题7.6 全部复习题,习题1,(1),(2);2,(1);3、1)、2);4;6; 7(1)(2);8;9(1);10,(1),(2);l1(1) pp295--296:习题77 l;2(1):3;5:;7
文档格式:DOC 文档大小:515.5KB 文档页数:5
习题讨论 题目: 1,计算I dx ta 2,计算lm=r(mndt,其中Bm为自然数 8,计算J=(11 xax,其中x是x的整数部分 sIn x sIn x 4,一研究l1= dx, dx,p>O的敛散性 x +sinx 5,设f:(-∞+∞)→R,在任何有限区间可积,且有limf(x)=A, 明,Ⅵt,()=「((x+0-f(x)=0 第七章定积分
文档格式:DOC 文档大小:397KB 文档页数:9
第十二章重积分 12-1重积分的概念与性质 12-2二重积分的计算 12-3三重积分的计算 12-4对空间曲面积分 12-Exe-1习题讨论:重积分的计算 三重积的计算习题讨论 讨论题目: 计算累次积分 1=dx Sindy+dx Sindy 2√x 2.计算二重积分=y-x-yo, 其中D={xy)Maxp)≤ 8求二重积分:1=xy
文档格式:DOC 文档大小:566.5KB 文档页数:12
第三节复合函数微分法 2-3复合函数微分法 23-1复合函数导数公式 23-2方向导数与梯度 第四讲复合函数微分法 课后作业 阅读:第二章第三节:pp.40-49 预习:第二章第四节:pp.50-58 作业:第二章习题3:pp.49-50:1,(2),(3,⑤5);2;4;6;7;9 2-3复合函数微分法 23-1复合函数导数公式 ()任何具体的初等多元函数的偏导数均可由一元函数求导公式解决,例 对函数z=sin-cos,求与一是简单的
文档格式:PPT 文档大小:727.5KB 文档页数:29
连续函数是非常重要的一类函数也是函数的一种 重要的性态然界中的许多变量都是连续变化着的,即 在很短的时间内,们的变化都是很微小的这种现象反 映在函数关系上,就是函数的连续性;对函数曲线来说 就是从起点开始到终点都不间断 函数增量(改变量) 设函数y=f(x,当x从x变到x1时,自变量的改变 量(在x处的增量)记为A=xrx2.相应的函数从x 变到(x)时,其函数值之差
文档格式:PPT 文档大小:189KB 文档页数:6
由第一章知:显函数y=f(x),也可写成F(x,y =y-f(x)=0.由方程F(x,y)=0确定的隐函数可能 有两种情形:y是x的函数y=f(x)或x是y的函 数x=(y);但并非所有隐函数都可化为一个显函 数.如y-esy+x2y2=0. 因而有必要研究隐函数的求导方法,下面通过几个例子来介绍
文档格式:PPT 文档大小:899.5KB 文档页数:34
微分中值定理包括罗尔定理、拉格朗日中值定理、柯西中值定理 一.罗尔(Rolle)定理 定理1(罗尔定理)设函数f(x)满足下列条件: (1)在闭区间[a,b]上连续; (2)在开区间(a,b)上可导; (3)f(a)=f(b);
首页上页678910111213下页末页
热门关键字
搜索一下,找到相关课件或文库资源 185 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有