点击切换搜索课件文库搜索结果(374)
文档格式:PDF 文档大小:5.46MB 文档页数:501
许多物理问题可通过不同途径归结为不同形式的数学模型 它们或是表现为偏微分方程的边值问题,或是表现为区域上的变 分问题,或是归结为边界上的积分方程。这些不同的数学形式在 理论上是等价的,但在实践中并不等效,它们分别导致有限差分 法、有限元方法和边界元方法等不同的数值计算方法 边界元方法是在经典的边界积分方程法的基础上吸取了有限 元离散化技术而发展起来的一种偏微分方程的数值解法它把微 分方程的边值问题归化为边界上的积分方程然后利用各种离散化 技术求解
文档格式:PPT 文档大小:976.5KB 文档页数:50
一、概念 实际中,f(x)多样,复杂,通常只能观测到一些离散数据; 或者f(x)过于复杂而难以运算。这时我们要用近似函数g(x)来 逼近f(x) 自然地,希望g(x)通过所有的离散点
文档格式:PPT 文档大小:310KB 文档页数:28
直接法得到的解是理论上准确的,但是我们可以看得出,它们的计算量都是n3 数量级,存储量为η2量级,这在n比较小的时候还比较合适(n<400),但是对于现 在的很多实际问题,往往要我们求解很大的n的矩阵,而且这些矩阵往往是系数矩阵 就是这些矩阵含有大量的0元素。对于这类的矩阵,在用直接法时就会耗费大量的时 间和存储单元。因此我们有必要引入一类新的方法:迭代法
文档格式:PPT 文档大小:541KB 文档页数:37
实际中,很多问题的数学模型都是微分方程。我们可以研究它们的一些 性质。但是,只有极少数特殊的方程有解析解。对于绝大部分的微分方程是 没有解析解的。 常微分方程作为微分方程的基本类型之一,在自然界与工程界有很广泛 的应用。很多问题的数学表述都可以归结为常微分方程的定解问题
文档格式:PPT 文档大小:341.5KB 文档页数:34
如果线性方程组的系数行列式不为零,即det(A)≠0, 则该方程组有唯一解。由克莱姆(cramer)法则,其解为 det() (i=1,2,…n det(A) 这种方法需要计算n+1个n阶行列式并作n次除法,而每个 n阶行列式计算需作(n-1)n!次乘法,计算量十分惊人
文档格式:PPT 文档大小:253.5KB 文档页数:42
直接法:经过有限次运算后可求得方程组精确解的方 法(不计舍入误差!) 迭代法:从解的某个近似值出发,通过构造一个无穷序 列去逼近精确解的方法。(一般有限步内得不到精确解) 直接法比较适用于中小型方程组。对高阶方程组, 既使系数矩阵是稀疏的,但在运算中很难保持稀疏性, 因而有存储量大,程序复杂等不足
文档格式:PPT 文档大小:467KB 文档页数:13
给出一组离散点,确定一个函数逼近原函数,插值是这样的一种手段。 在实际中,数据不可避免的会有误差,插值函数会将这些误差也包括在内。 因此,我们需要一种新的逼近原函数的手段: ①不要求过所有的点(可以消除误差影响);
文档格式:DOC 文档大小:310.5KB 文档页数:21
不少实际问题不但要求在节 点上函数值相等,而且 还要求它的导数值也相等(即要 求在节点上具有一阶光 滑度),甚至要求高阶导数也相 等,满足这种要求的插值 多项式就是埃尔米特(Hermite) 插值多项式
文档格式:PPT 文档大小:1.38MB 文档页数:37
1.1 拉格朗日插值公式 1.2 牛顿插值公式 1.3 埃特金插值公式 1.4 存在惟一性定理 1.5 插值余项 1.6 分段三次埃尔米特插值 1.7 三次样条插值 1.8 应用实例
文档格式:DOC 文档大小:295KB 文档页数:19
前面根据区间 [a, b] 上给出 的节点做插值多项式 L (x) n 近似 f (x) ,一般总认为 L (x) n 的次数 n 越高逼近 f (x) 的精度 越好,但实际上并非如此
首页上页678910111213下页末页
热门关键字
搜索一下,找到相关课件或文库资源 374 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有