点击切换搜索课件文库搜索结果(9809)
文档格式:PDF 文档大小:106.36KB 文档页数:8
3.2矩阵的乘法 定义2.1(矩阵的乘法)设A=(a)是一个mxn矩阵,B=(b)是一个 nxp矩阵即A的列数等于B的行数规定A与B的记AB是一个m×p矩阵 工其第i行第j列的元素等于A的第行各元素与B的第列对应元素的乘积 之和,即,AB=
文档格式:PDF 文档大小:78.65KB 文档页数:2
1.4因式分解 定义4.1设p(x)是Q上的一个次数大于0的多项式如果 p(x)在[x]中没有真因子,则称是既约多项式(不可约 多项式或质式) 设p是一个既约多项式,f是任意多项式,则(p,f)是 p的因式,从而(p,f)=1或p=c(p,f),c∈因此p和f 二的关系是:(p,f)=1或plf. 命题4.1设p(x)是Q上的即约多项式,若p(x)整除 二多项式f(x)f(x)之积,则p(x)必能整除其中之一
文档格式:PDF 文档大小:94.55KB 文档页数:6
1.3最大公约式 定义31设f(x),g(x)是2x中不全为零的多项式如果d(x) 是f(x)和g(x)公因式,而且f(x)与g(x)的任何公因式均能整 除d(x)则称d(x)是f(x)与g(x)的一个最大公因式 王定31数城Q上的任意两个不全为零的多项式8(0 均有最大公因子,且对于它们的任意最大公因式d(x)均有 0(x),v(x)∈[x使得 d(x)=o(xf(x)+y(x)g(x)
文档格式:DOC 文档大小:305KB 文档页数:8
第二讲矩阵的运算 复习:一、加法。 二、数乘。 三、矩阵与矩阵相乘。 四、转置矩阵 新授: 五、方阵的行列式 定义由n阶方阵A的元素所构成的n阶行列式(各元素 的位置不变),称为方阵A的行列式。记作A或detA (determinant). 注意:方阵与其行列式不同,前者为数表,后者为数值。 运算律: (1)A|=A(行列式性质1) (2) kA=k\A() (3)|AB|=|B(证明较繁)
文档格式:DOC 文档大小:112.5KB 文档页数:40
染色体组的概念 在自然界中,每种生物都有一定数目的染色体,而且体细胞内 的染色体数目等于性细胞的两倍,但细胞学和遗传学的研究得之, 每个生物体细胞内的染色体并不是零乱的无序的排列,而是分成若 干个组。每个组内包含有一定数目的染色体。在各组内每条染色体形态和结构种不相同
文档格式:PPT 文档大小:377KB 文档页数:15
紧集上的连续映射 为了将一元连续函数在闭区间上的重要性质推广到多元连续函 数,为此先定义多元函数在点集的边界点连续的概念。 定义 11.3.1 设点集 K  n R ,f : K→ m R 为映射(向量值函数), x K 0 
文档格式:PPT 文档大小:1.2MB 文档页数:40
到目前为止, 我们所学习的只是一元函数的分析性质。但在现实 生活中,除了非常简单的情况之外,可以仅用一个自变量和一个因变 量的变化关系来刻画的问题可以说是非常少的。比如像物理学中研究 质点运动这么一个相对较为容易的问题,也需要用到确定空间位置的 三个坐标变量 x、y、z 和一个时间变量 t 以及多个函数值(如位置、 速度、加速度、动量等),更不用说在各种不同的学科研究中会遇到 更为复杂的问题。这种多个自变量和多个因变量的变化关系,反映到 数学上就是多元函数(或多元函数组,即向量值函数)
文档格式:PPT 文档大小:886.5KB 文档页数:29
集合论的基础是由德国数学家 Cantor 在 19 世纪 70 年代奠定 的。 集合:指具有某种特定性质的具体的或抽象的对象汇集成的总 体。 这些具体的或抽象的对象称为该集合的元素
文档格式:PDF 文档大小:215.05KB 文档页数:29
无穷乘积的定义 设 p1,p2,…, n p ,…( ≠ 0 n p )是无穷可列个实数,我们称它 们的“积” ⋅ 21 ⋅ ⋅ ppp n ⋅\\ 为无穷乘积,记为∏ ∞ n=1 pn ,其中 n p 称为无穷乘积的通项或一般项
文档格式:PDF 文档大小:1.83MB 文档页数:55
本章主要内容简介 1.主要介绍n维向量(vector)、向量组(vector set)的线性组合、向 量的线性表示、向量组的线性相关与线性无关、向量组的极 大线性无关组、向量组的秩、向量组的等价等概念。 2.介绍向量组线性相关(linearly dependent)的性质。矩阵的秩与 向量组的秩的关系,用矩阵的初等变换求向量组的秩和极大无关组。 3.用向量组的性质分析线性方程组的结构 4.向量空间、子空间的概念,向量空间的基(basis)和维数(dimension)
首页上页972973974975976977978979下页末页
热门关键字
搜索一下,找到相关课件或文库资源 9809 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有