点击切换搜索课件文库搜索结果(1445)
文档格式:DOC 文档大小:262.5KB 文档页数:10
实践应用 问题一 三人合作效益分配问题 问题的提出: 一般来说,从事某一活动(比如经济活动、社会活动)的各个方面若能同李合作,往 往能够 获得比个人单独活动更大的效益或更小的开支。确定合理地分配这些效益(或分担这些费 用)的 方案是促成合作的前提,我们先研究一个简单的例子
文档格式:DOC 文档大小:266.5KB 文档页数:6
对应特征值礼=-1只有1个线性无关的特征向量,而特征方程的基础解系为5,全体特征向量为x=k1l1(k1≠0)例9设方阵A的特征值A1≠2,对应的特征向量分别为x1,x2,证明: (1)x1-x2不是A的特征向量;
文档格式:DOC 文档大小:260.5KB 文档页数:6
目的:对于实对称矩阵A(A=A),求正交矩阵Q(QQ=E), 使得QAQ=A.此时,称A正交相似于对角矩阵A 1.实对称矩阵的特征值与特征向量的性质 定理6a=A→∈R. 证设Ax=x(x≠0),x=(51,52,5n),则有 x=5+2++n>0
文档格式:DOC 文档大小:308.5KB 文档页数:7
4.5线性方程组解的结构 b 齐次方程组Ax=0 非齐次方程组Ax=b(b≠0) 结论:(1)[4b]→[d,Ax=b与Cx=d同解 (2)Ax=0有非零解兮rank4
文档格式:DOC 文档大小:327KB 文档页数:7
4.3向量组的秩与最大无关组 1.向量组的秩:设向量组为T,若 (1)在T中有r个向量a1,a2,…,a,线性无关; (2)在T中有r+1个向量线性相关(如果有r+1个向量的话) 称a1,a2,…,a,为向量组为T的一个最大线性无关组, 称r为向量组T的秩,记作:秩(T)=r 注](1)向量组中的向量都是零向量时,其秩为0 (2)秩(T)=r时,T中任意r个线性无关的向量都是T的一个 最大无关组
文档格式:DOC 文档大小:285KB 文档页数:7
3.4初等矩阵 定义对单位矩阵进行一次初等变换得到的矩阵,称为初等矩阵 [注]对单位矩阵进行一次初等列变换,相当于对单位矩阵进行一次 同类型的初等行变换.因此,初等矩阵可分为以下3类:
文档格式:DOC 文档大小:345.5KB 文档页数:7
2.3逆矩阵 定义:对于Ann,若有Bn满足AB=BA=E,则称A为可逆矩阵, 且B为A的逆矩阵,记作A-1=B. 定理1若A为可逆矩阵,则A的逆矩阵唯一 证设B与C都是A的逆矩阵,则有
文档格式:DOC 文档大小:182.5KB 文档页数:6
解法1因为D1= =0 1132 1432 D1与D的第1列元素的代数余子式相同 所以将D1按第1列展开可得A1+A21+A31+A41=0. 解法2因为D的第3列元素与D的第1列元素的代数余子式相乘求和 为0,即3A1+3A21+3A31+3A41=0 所以
文档格式:DOC 文档大小:195KB 文档页数:6
第一章n阶行列式 1.2排列及其逆序数 1.排列:n个依次排列的元素 例如,自然数1,2,3,4构成的不同排列有4!=24种 1234,1342,1423,1432,1324,1243 2134,2341,2413,2431,2314,2143 3124,3241,3412,3421,3214,3142 4123,4231,4312,4321,4213,4132 例1互异元素1,2,…Pn构成的不同排列有n种 解在n个元素中选取1个 n种取法 在剩余n-1个元素中选取1个 n-1种取法 在剩余n-2个元素中选取1个n-2种取法
文档格式:PDF 文档大小:1.16MB 文档页数:29
复习要求 1.对角线法计算二阶和三阶行列式.上(下三角行列式,对角行列式 2.会求排列的逆序数(P.7,例4) 3.理解n阶行列式的定义D=A=det(ai=(-1)apa2p2anpn 4.熟练掌握行列式的性质,用行列式的性质计算行列式
首页上页96979899100101102103下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1445 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有