当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

钢结构技术培训:《钢结构基础理论知识》教学资源(讲义)第三章 钢结构的连接

资源类别:文库,文档格式:DOC,文档页数:24,文件大小:1.53MB,团购合买
第三章钢结构的连接 第一节钢结构的连接方法 钢结构是由钢板、型钢通过必要的连接组成基本构件,如梁、柱、桁架等;再通过一定的安装连结装配成空间整体结构,如屋盖、厂房、钢闸门、钢桥等。可见,连接的构造和计算是钢结构设计的重要组成部分。
点击下载完整版文档(DOC)

第三章钢结构的连接 第一节钢结构的连接方法 钢结构是由钢板、型钢通过必要的连接组成基本构件,如梁、柱、桁架等:再通过一 定的安装连结装配成空间整体结构,如屋盖、厂房、钢闸门、钢桥等。可见,连接的构造 和计算是钢结构设计的重要组成部分。好的连接应当符合安全可靠、节约钢材、构造简单 和施工方便等原则。 钢结枃的连接方法可分为焊缝连接、铆钉连接和螺栓连接三种(详见附图十三) 一、焊缝连接 焊接是现代钢结构最主要的连接方法。其优点是不削弱构件截面(不必钻孔),构造 简单,节约钢材,加工方便,在一定条件下还可以采用自动化操作,生产效率高。此外, 焊缝连接的刚度较大密封性能好 焊缝连接的缺点是焊缝附近钢材因焊接的高温作用而形成热影响区,热影响区由高温 降到常温冷却速度快,会使钢材脆性加大,同时由于热影响区的不均匀收缩,易使焊件产 生焊接残余应力及残余变形,甚至可能造成裂纹,导致脆性破坏。焊接结枃低温冷脆问题 也比较突出。 铆钉连接 铆接的优点是塑性和韧性较好,传力可靠,质量易于检查和保证,可用于承受动载的 重型结构。但是,由于铆接工艺复杂、用钢量多,因此,费钢又费工。现已很少采用 三、螺栓连接 螺栓连接分为普通螺栓连接和髙强度螺栓连接两种。普通螺栓通常用Q235钢制成,而 髙强度螺栓则用高强度钢材制成并经热处理。髙强度螺栓因其连接紧密,耐疲劳,承受动 载可靠,成本也不太高,目前在一些重要的永久性结构的安装连接中,已成为代替铆接的 优良连接方法。 螺栓连接的优点是安装方便,特别适用于工地安装连接,也便于拆卸,适用于需要装 拆结构和临时性连接。其缺点是需要在板件上开孔和拼装时对孔,増加制造工作量;螺栓 孔还使构件截面削弱,且被连接的板件需要相互搭接或另加拼接板或角钢等连接件,因而 比焊接连接多费钢材。 第二节焊接方法、焊缝类型和质量级别 、钢结构中常用的焊接方法 焊接方法很多,钢结构中主要采用电弧焊,薄钢板(t≤3m)的连接有时也可以采

- 20 - 第三章 钢结构的连接 第一节 钢结构的连接方法 钢结构是由钢板、型钢通过必要的连接组成基本构件,如梁、柱、桁架等;再通过一 定的安装连结装配成空间整体结构,如屋盖、厂房、钢闸门、钢桥等。可见,连接的构造 和计算是钢结构设计的重要组成部分。好的连接应当符合安全可靠、节约钢材、构造简单 和施工方便等原则。 钢结构的连接方法可分为焊缝连接、铆钉连接和螺栓连接三种(详见附图十三)。 一、焊缝连接 焊接是现代钢结构最主要的连接方法。其优点是不削弱构件截面(不必钻孔),构造 简单,节约钢材,加工方便,在一定条件下还可以采用自动化操作,生产效率高。此外, 焊缝连接的刚度较大密封性能好。 焊缝连接的缺点是焊缝附近钢材因焊接的高温作用而形成热影响区,热影响区由高温 降到常温冷却速度快,会使钢材脆性加大,同时由于热影响区的不均匀收缩,易使焊件产 生焊接残余应力及残余变形,甚至可能造成裂纹,导致脆性破坏。焊接结构低温冷脆问题 也比较突出。 二、铆钉连接 铆接的优点是塑性和韧性较好,传力可靠,质量易于检查和保证,可用于承受动载的 重型结构。但是,由于铆接工艺复杂、用钢量多,因此,费钢又费工。现已很少采用。 三、螺栓连接 螺栓连接分为普通螺栓连接和高强度螺栓连接两种。普通螺栓通常用 Q235 钢制成,而 高强度螺栓则用高强度钢材制成并经热处理。高强度螺栓因其连接紧密,耐疲劳,承受动 载可靠,成本也不太高,目前在一些重要的永久性结构的安装连接中,已成为代替铆接的 优良连接方法。 螺栓连接的优点是安装方便,特别适用于工地安装连接,也便于拆卸,适用于需要装 拆结构和临时性连接。其缺点是需要在板件上开孔和拼装时对孔,增加制造工作量;螺栓 孔还使构件截面削弱,且被连接的板件需要相互搭接或另加拼接板或角钢等连接件,因而 比焊接连接多费钢材。 第二节 焊接方法、焊缝类型和质量级别 一、钢结构中常用的焊接方法 焊接方法很多,钢结构中主要采用电弧焊,薄钢板( t  3mm )的连接有时也可以采

用电阻焊或气焊 1.电弧焊 电弧焊是利用焊条或焊丝与焊件间产生的电弧热,将金属加热并熔化的焊接方法 其原理是采用低电压(一般为50~70V)、大电流(几十到几百安)引燃电弧,使焊件与焊 条或焊丝之间产生很大热量和强烈的弧光,利用电弧热来熔化焊件的边缘金属和焊条(丝) 进行焊接。根据操作的自动化程度和焊接时用以保护熔化金属的物质种类,电弧焊可分为 手工电弧焊,自动和半自动埋弧焊及CO2气体保护焊等。 (1)手工电弧焊是钢结构制造中最常用的焊接方法,设备简单,操作灵活,适用性和 可达性强,对各种施焊位置和分散或曲折短焊缝均适用。缺点是生产效率比自动、半自动 焊低,质量稍低并且变异性大,施焊时电弧光较强(详见附图十四) 手工焊所采用的焊条,其表面都敷有一层1~1.5mm厚度的药皮。药皮的作用:稳定 电弧;施焊时产生气体保护熔融金属与大气隔离,以防止空气中氧氮侵入而使焊缝变脆 造成熔渣(清理焊缝时铲除)覆盖于熔成焊缝表面,使与大气隔离,并使焊缝冷却缓慢以便 混入熔融金属中的气体和有害杂质溢出表面;另外,药皮中的合金成份还可以改善焊缝性 焊条选用应和焊件钢材的强度和性能相适应。在手工焊时,对Q235钢用E43型焊条 (E4300~E4316)Q345钢(6Mn钢)用E50型焊条(E5000~E5018),Q390(15MnV)钢和Q420 钢均用E5型焊条(E500~E5518)。其中E表示焊条:前两位数字表示焊缝熔敷金属或对 接焊缝的抗拉强度分别为420N/mm2,490N/mm2,540N/mm2,(折合43kgf/mm2,50kgf/mm2 55kgf/m3):第3位数字表示适用的焊接位置,0和1表示适用于人与全位置施焊(平、横、 立、仰),2表示适用于平焊及水平角焊,4表示适用于向下立焊:第3位和第4位数字组 合表示药皮类型和适用的电流种类(交、直流电源)。第3位和第4位数字为15、16、18 的焊条为低氢型焊条,其所得焊缝具有较好的塑性、韧性和抗裂性,故直接承受动力荷载 的重要结构以及处于低温条件下工作的结构,一般指定采用上述型号。而非低氢型焊条, 可用于其他结构。当不同强度的钢材连接时,可采用低强度钢材相适应的焊接材料。 (2)焊剂层下自动或半自动埋弧焊焊剂层下自动或半自动埋弧焊是焊接过程机槭化 的一种主要方法。它所采用的是盘状连续的光焊丝在散粒状焊剂下燃弧焊接,散粒状焊剂 的作用与手工焊焊条的药皮相同。自动焊的引弧、焊丝送下、焊剂堆落和焊丝沿焊缝方向 的移动都是自动的。而半自动焊的焊接前进方式仍是依靠手持焊枪移动(详见附图十五) 埋弧焊的优点是与大气隔离保护效果好,且无金属飞溅,弧光不外露:可采用较大电 流使熔深加大,相应可减小对接焊件间隙和坡口角度:节省焊丝和电能,劳动条件好,生 产效率高:焊缝质量稳定可靠,塑性和韧性比较好。其缺点是焊前装配要求严格,施焊位 置受限制,较适用于长直的水平俯焊缝或倾角不大的斜面焊缝,不如手工焊灵活。 埋弧焊所采用的焊丝和焊剂应与焊件钢材相匹配,焊丝一般采用专用的焊接用钢丝 对Q235钢,可采用Ho8A、H08MnA、HOεE等焊丝,相应的焊剂分别为H431、HJ430和SJ401 对低合金高强度结构钢尚应根据坡口情况相应选用。对Q345钢,不开坡口的对接焊缝

- 21 - 用电阻焊或气焊。 1.电弧焊 电弧焊是利用焊条或焊丝与焊件间产生的电弧热,将金属加热并熔化的焊接方法。 其原理是采用低电压(一般为 50~70V)、大电流(几十到几百安)引燃电弧,使焊件与焊 条或焊丝之间产生很大热量和强烈的弧光,利用电弧热来熔化焊件的边缘金属和焊条(丝) 进行焊接。根据操作的自动化程度和焊接时用以保护熔化金属的物质种类,电弧焊可分为 手工电弧焊,自动和半自动埋弧焊及 CO2 气体保护焊等。 (1)手工电弧焊是钢结构制造中最常用的焊接方法,设备简单,操作灵活,适用性和 可达性强,对各种施焊位置和分散或曲折短焊缝均适用。缺点是生产效率比自动、半自动 焊低,质量稍低并且变异性大,施焊时电弧光较强(详见附图十四)。 手工焊所采用的焊条,其表面都敷有一层 1~1.5mm 厚度的药皮。药皮的作用:稳定 电弧;施焊时产生气体保护熔融金属与大气隔离,以防止空气中氧氮侵入而使焊缝变脆; 造成熔渣(清理焊缝时铲除)覆盖于熔成焊缝表面,使与大气隔离,并使焊缝冷却缓慢以便 混入熔融金属中的气体和有害杂质溢出表面;另外,药皮中的合金成份还可以改善焊缝性 能。 焊条选用应和焊件钢材的强度和性能相适应。在手工焊时,对 Q235 钢用 E43 型焊条 (E4300~E4316)Q345 钢(16Mn 钢)用 E50 型焊条(E5000~E5018),Q390(15MnV)钢和 Q420 钢均用 E55 型焊条(E5500~E5518)。其中 E 表示焊条;前两位数字表示焊缝熔敷金属或对 接焊缝的抗拉强度分别为 420N/mm2,490N/mm2,540N/mm2,(折合 43kgf/mm2,50kgf/mm2, 55kgf/mm2 );第 3 位数字表示适用的焊接位置,0 和 1 表示适用于人与全位置施焊(平、横、 立、仰),2 表示适用于平焊及水平角焊,4 表示适用于向下立焊;第 3 位和第 4 位数字组 合表示药皮类型和适用的电流种类(交、直流电源)。第 3 位和第 4 位数字为 15、16、18 的焊条为低氢型焊条,其所得焊缝具有较好的塑性、韧性和抗裂性,故直接承受动力荷载 的重要结构以及处于低温条件下工作的结构,一般指定采用上述型号。而非低氢型焊条, 可用于其他结构。当不同强度的钢材连接时,可采用低强度钢材相适应的焊接材料。 (2)焊剂层下自动或半自动埋弧焊 焊剂层下自动或半自动埋弧焊是焊接过程机械化 的一种主要方法。它所采用的是盘状连续的光焊丝在散粒状焊剂下燃弧焊接,散粒状焊剂 的作用与手工焊焊条的药皮相同。自动焊的引弧、焊丝送下、焊剂堆落和焊丝沿焊缝方向 的移动都是自动的。而半自动焊的焊接前进方式仍是依靠手持焊枪移动(详见附图十五)。 埋弧焊的优点是与大气隔离保护效果好,且无金属飞溅,弧光不外露;可采用较大电 流使熔深加大,相应可减小对接焊件间隙和坡口角度;节省焊丝和电能,劳动条件好,生 产效率高;焊缝质量稳定可靠,塑性和韧性比较好。其缺点是焊前装配要求严格,施焊位 置受限制,较适用于长直的水平俯焊缝或倾角不大的斜面焊缝,不如手工焊灵活。 埋弧焊所采用的焊丝和焊剂应与焊件钢材相匹配,焊丝一般采用专用的焊接用钢丝。 对 Q235 钢,可采用 H08A、H08MnA、H08E 等焊丝,相应的焊剂分别为 HJ431、HJ430 和 SJ401。 对低合金高强度结构钢尚应根据坡口情况相应选用。对 Q345 钢,不开坡口的对接焊缝

可用H08A焊丝,中厚板开坡口对接可用H08MnA、H10Mn2和H10 MnSi焊丝,焊剂可用HJ350 对Q390钢和Q420钢,不开坡口的对接焊缝用H08A、HO8MnA焊丝,中厚板开坡口对接时 用H0Mn2、 H1OMnSi:焊剂用HJ430或HJ431:而厚板深坡口对接时常用Ho8 MnMoA焊丝, 焊剂为H350或H250 2.电阻焊 电阻焊是利用电流通过焊件接触点表面的电阻所产生的热量来熔化金属,再通过压力 使其焊合。冷弯薄壁型钢的焊接,常用电阻点焊,板叠总厚度一般不超过12m,焊点应主 要承受剪力,其抗拉(撕裂)能力较差 二、焊缝连接形式及焊缝类型 焊缝连接形式按被连接构件间的相对位置分为对接、搭接、T形连接和角接四种(详见 附图十六)。所采用的焊缝按其构造来分,主要有对接焊缝和角焊缝两种类型。T形连接和 角连接根据板厚、焊接方法、焊缝受力情况,可采用角焊缝或开坡口的对接焊缝。 焊缝按其工作性质来分有强度焊缝和密强焊缝两种。强度焊缝只作为传递内力之用, 密强焊缝除传递内力外,还须保证不使气体或液体渗漏。 焊缝按施焊位置分,有俯焊(平焊)、立焊、横焊和仰焊四种(详见附图十七。俯焊 的施焊工作方便,质量好,效率高:立焊和横焊是在立面上施焊的竖向和水平焊缝,生产 效率和焊接质量比俯焊的差一些:仰焊是仰望向上施焊,操作条件最差,焊缝质量不易保 证,因此应尽量避免采用仰焊焊缝。 三、焊缝缺陷、质量检验和焊缝级别 1.焊缝缺陷 焊缝缺陷是指焊接过程中,产生于焊缝金属或邻近热影响区钢材表面或内部的缺陷。 常见的缺陷有:①焊缝尺寸偏差:②咬边,如焊缝与母材交界处形成凹坑:③弧坑,起弧 或落弧处焊缝所形成的凹坑:④未熔合,指焊条熔融金属与母材之间局部未熔合:⑤母材 被烧穿:⑥气孔:⑦非金属夹渣:⑧裂纹。以上这些缺陷,一般都会引起应力集中削弱焊 缝有效截面,降低承载能力,尤其裂纹对焊缝受力的危害最大。它会产生严重的应力集中, 并易于扩展引起断裂,按规定是不允许发生裂纹的。因此,若发现焊缝有裂纹,应彻底铲 除后补焊 2.焊缝质量检验和焊缝级别 根据结构类型和重要性,《钢结构工程施工质量验收规范》(GB50205-2001)将焊缝质 量检验级别为三级。Ⅲ级检验项目规定只对全部焊缝做外观检査,即检验焊缝实际尺寸是 否符合要求和有无看得见的裂纹、咬边和气孔等缺陷:Ⅰ级焊缝超声波和射线探伤的比例 均为100%,Ⅱ级焊缝超声波和射线探伤的比例均为20%,且均不小于200m。当焊缝长度 小于20om时,应对整条焊缝探伤。探伤应符合《钢焊缝手工超声波探伤方法和探伤结构 分级法》GB11345或《钢熔化焊对接接头射线照像和质量分级》GB3323的规定。 钢结构中一般采用Ⅲ级焊缝,可满足通常的强度要求,但其对接焊缝的抗拉强度有较 大的变异性,《钢结构设计规范》(GB50017-)送审稿规定,其设计值仅为主体钢材的85%

- 22 - 可用 H08A 焊丝,中厚板开坡口对接可用 H08MnA、H10Mn2 和 H10MnSi 焊丝,焊剂可用 HJ350。 对 Q390 钢和 Q420 钢,不开坡口的对接焊缝用 H08A、H08MnA 焊丝,中厚板开坡口对接时 用 H10Mn2、H10MnSi;焊剂用 HJ430 或 HJ431;而厚板深坡口对接时常用 H08MnMoA 焊丝, 焊剂为 HJ350 或 HJ250。 2.电阻焊 电阻焊是利用电流通过焊件接触点表面的电阻所产生的热量来熔化金属,再通过压力 使其焊合。冷弯薄壁型钢的焊接,常用电阻点焊,板叠总厚度一般不超过 12mm,焊点应主 要承受剪力,其抗拉(撕裂)能力较差。 二、焊缝连接形式及焊缝类型 焊缝连接形式按被连接构件间的相对位置分为对接、搭接、T 形连接和角接四种(详见 附图十六)。所采用的焊缝按其构造来分,主要有对接焊缝和角焊缝两种类型。T 形连接和 角连接根据板厚、焊接方法、焊缝受力情况,可采用角焊缝或开坡口的对接焊缝。 焊缝按其工作性质来分有强度焊缝和密强焊缝两种。强度焊缝只作为传递内力之用, 密强焊缝除传递内力外,还须保证不使气体或液体渗漏。 焊缝按施焊位置分,有俯焊(平焊)、立焊、横焊和仰焊四种(详见附图十七)。俯焊 的施焊工作方便,质量好,效率高;立焊和横焊是在立面上施焊的竖向和水平焊缝,生产 效率和焊接质量比俯焊的差一些;仰焊是仰望向上施焊,操作条件最差,焊缝质量不易保 证,因此应尽量避免采用仰焊焊缝。 三、焊缝缺陷、质量检验和焊缝级别 1.焊缝缺陷 焊缝缺陷是指焊接过程中,产生于焊缝金属或邻近热影响区钢材表面或内部的缺陷。 常见的缺陷有:①焊缝尺寸偏差;②咬边,如焊缝与母材交界处形成凹坑;③弧坑,起弧 或落弧处焊缝所形成的凹坑;④未熔合,指焊条熔融金属与母材之间局部未熔合;⑤母材 被烧穿;⑥气孔;⑦非金属夹渣;⑧裂纹。以上这些缺陷,一般都会引起应力集中削弱焊 缝有效截面,降低承载能力,尤其裂纹对焊缝受力的危害最大。它会产生严重的应力集中, 并易于扩展引起断裂,按规定是不允许发生裂纹的。因此,若发现焊缝有裂纹,应彻底铲 除后补焊。 2.焊缝质量检验和焊缝级别 根据结构类型和重要性,《钢结构工程施工质量验收规范》(GB50205-2001)将焊缝质 量检验级别为三级。Ⅲ级检验项目规定只对全部焊缝做外观检查,即检验焊缝实际尺寸是 否符合要求和有无看得见的裂纹、咬边和气孔等缺陷;Ⅰ级焊缝超声波和射线探伤的比例 均为 100%,Ⅱ级焊缝超声波和射线探伤的比例均为 20%,且均不小于 200mm。当焊缝长度 小于 200mm 时,应对整条焊缝探伤。探伤应符合《钢焊缝手工超声波探伤方法和探伤结构 分级法》GB11345 或《钢熔化焊对接接头射线照像和质量分级》GB3323 的规定。 钢结构中一般采用Ⅲ级焊缝,可满足通常的强度要求,但其对接焊缝的抗拉强度有较 大的变异性,《钢结构设计规范》(GB50017-)送审稿规定,其设计值仅为主体钢材的 85%

左右。因而对有较大拉应力的对接焊缝,以及直接承受动力荷载构件的较重要的焊缝,可 部分采用Ⅱ级焊缝,对动力和疲劳性能有较高要求处可采用Ⅰ级焊缝。 四、焊缝符号及标注方法 在钢结构施工图上缝应采用焊缝符号表示,焊缝符号及标注方法应按《建筑结构制图 标准》(GB/T50105-2001)和《焊缝符号表示法》(GB324-88)执行 焊缝符号由指引线和两条相互平行的基本符号组成,必要时还可加上辅助符号、补充 符号和焊缝尺寸符号 (1)指引线一般由单箭头的指引和两条相互平行的基准线所组成。一条基准线为实线, 另一条为虚线,均为细线,(详见附图十八)。虚线的基准线可以画在实线基准线的上侧或 下侧。基准线一般应与图纸的底边相平行,但在特殊条件下也与底边相垂直。为引线的方 便,允许箭头弯折一次 (2)基本符号用以表示焊缝的形状。下表中摘录了一些常用的焊缝基本符号。基本符 号与基准线的相对位置应按下列规则表示:

- 23 - 左右。因而对有较大拉应力的对接焊缝,以及直接承受动力荷载构件的较重要的焊缝,可 部分采用Ⅱ级焊缝,对动力和疲劳性能有较高要求处可采用Ⅰ级焊缝。 四、焊缝符号及标注方法 在钢结构施工图上缝应采用焊缝符号表示,焊缝符号及标注方法应按《建筑结构制图 标准》(GB/T50105-2001)和《焊缝符号表示法》(GB324-88)执行。 焊缝符号由指引线和两条相互平行的基本符号组成,必要时还可加上辅助符号、补充 符号和焊缝尺寸符号。 (1)指引线一般由单箭头的指引和两条相互平行的基准线所组成。一条基准线为实线, 另一条为虚线,均为细线,(详见附图十八)。虚线的基准线可以画在实线基准线的上侧或 下侧。基准线一般应与图纸的底边相平行,但在特殊条件下也与底边相垂直。为引线的方 便,允许箭头弯折一次。 (2)基本符号用以表示焊缝的形状。下表中摘录了一些常用的焊缝基本符号。基本符 号与基准线的相对位置应按下列规则表示:

焊缝符号中的基本符号、辅助符号和补充符号摘录 对接焊缝 角塞焊缝|点 基名称 本符号 I形焊缝V形焊缝单边形焊缝带边的 缝槽焊缝缝 符号 名称 示意图 示例 辅平面符号 N 助 凹面符号 三面围焊 缝符号 补充符号 周边焊缝 符号 工地现场 焊缝符号 1如果焊缝在接头的箭头侧,基本符号应标在基准线的实线侧 ②如果焊缝在接头的非箭头侧,基本符号应标在基准线的虚线侧 ③当为双面对称焊缝时,基准线可只画实线一条 ④当为单面的对接焊缝如Ⅴ形焊缝、U形焊缝,则箭头线应指向有坡口一侧

- 24 - 焊缝符号中的基本符号、辅助符号和补充符号摘录 ①如果焊缝在接头的箭头侧,基本符号应标在基准线的实线侧; ②如果焊缝在接头的非箭头侧,基本符号应标在基准线的虚线侧; ③当为双面对称焊缝时,基准线可只画实线一条; ④当为单面的对接焊缝如 V 形焊缝、U 形焊缝,则箭头线应指向有坡口一侧。 基 本 符 号 名 称 对 接 焊 缝 角 焊 缝 塞焊缝 与 槽焊缝 点 焊 I 形焊缝 V 形焊缝 单边V形焊缝 缝 带钝边的 V 形焊缝 带钝边的 U 形焊缝 符 号 名 称 示 意 图 符 号 示 例 辅 助 符 号 平面符号 凹面符号 补 充 符 号 三面围焊 缝符号 周边焊缝 符号 工地现场 焊缝符号

(3)辅助符号是表示焊缝表面形状特征的符号,如对接焊缝表面余高的部分需加 工,使其与焊件表面齐平,则可在对接焊缝符号上加一短画,此短画即为辅助符号 (4)当焊缝分面比较复杂时,在标准焊缝代号的同时,可在图形边的焊缝处加粗线 栅线等强调焊缝的重要性(详见附图十九) 第三节焊接残余应力和焊接残余变形 焊接构件在未受荷载时,由于施焊时在焊件上产生局部髙温所形成的不均匀温度 场而引起的内应力和变形,称为焊接应力和焊接变形。它会直接影响到焊接结构的制造 质量、正常使用,并且是形成各种焊接裂纹的因素之一,应在设计、制造和焊接过程中 加以控制和重视。 焊接残余应力的种类和产生的原因 焊接应力有暂时应力与残余应力之分。暂时应力只在焊接过程中一定的温度条件 下存在,当焊件冷却至常温时,暂时应力即行消失。焊接残余应力是指焊件冷却后残留 在焊件内的应力。从结构的使用要求来看,焊接残余应力有着重要意义。残余应力按其 方向可分为纵向、横向和沿厚度方向的应力三种 1.纵向焊接残余应力 焊接过程一个不均匀加热和冷却的过程。在施焊时,焊件上产生不均匀的温度场 焊缝及附近温度最高,可达1600℃以上,其邻近区域则温度急剧下降。不均匀的温度场 将产生不均匀的膨胀。焊缝及附近高温处的钢材膨胀最大,由于受到两侧温度较低,膨 胀较小的钢材的限制,产生了热状态塑性压缩。焊缝冷压时,被塑性压缩的焊缝区趋向 于缩得比原始长度稍短,这种缩短变形受到焊缝两侧钢材的限制,使焊缝区产生纵向拉 应力。在低碳钢和低合金钢中,这种拉应力以常达到钢材的屈服强度。焊接残余应力是 荷载未作用时的内应力,因此会在焊件内部自相平衡,这就必然在距焊缝稍远区域应力。 用三块剪切下料的钢板焊成的工字形截面,纵向焊接残余应力分布(详见附图二十)。 2.横向残余应力 横向残余应力产生的原因有:①由于焊缝纵向收缩,两块钢板趋向于外弯成弓形的 趋势,但在实际上焊缝将两块钢板连成整体,不能分开,于是在焊缝中部将产生横向拉 应力,而在两端产生横向压应力。②焊缝在施焊过程中,先后冷却的时间不同,先焊的 焊缝已经凝固,且具有一定的强度,会阻止后焊焊缝在横向的自由膨胀,使其产生横向 的塑性压缩变形。当焊缝冷却时,后焊焊缝的收缩受到已凝固焊缝的限制而产生横向拉 应力,同时在先焊部分的焊缝内产生横向压应力。横向收缩引起的横向应力与施焊方向 及先后次序有关,焊缝的横向残余应力是上述两种原因产生的应力的合成(详见附图二 十一)。 3沿焊缝厚度方向的残余应力 在厚钢板的连接中,焊缝需要多层施焊。因此,除有纵向和横向残余应力(σσ,)

- 25 - (3)辅助符号是表示焊缝表面形状特征的符号,如对接焊缝表面余高的部分需加 工,使其与焊件表面齐平,则可在对接焊缝符号上加一短画,此短画即为辅助符号。 (4)当焊缝分面比较复杂时,在标准焊缝代号的同时,可在图形边的焊缝处加粗线、 栅线等强调焊缝的重要性(详见附图十九)。 第三节 焊接残余应力和焊接残余变形 焊接构件在未受荷载时,由于施焊时在焊件上产生局部高温所形成的不均匀温度 场而引起的内应力和变形,称为焊接应力和焊接变形。它会直接影响到焊接结构的制造 质量、正常使用,并且是形成各种焊接裂纹的因素之一,应在设计、制造和焊接过程中 加以控制和重视。 一、焊接残余应力的种类和产生的原因 焊接应力有暂时应力与残余应力之分。暂时应力只在焊接过程中一定的温度条件 下存在,当焊件冷却至常温时,暂时应力即行消失。焊接残余应力是指焊件冷却后残留 在焊件内的应力。从结构的使用要求来看,焊接残余应力有着重要意义。残余应力按其 方向可分为纵向、横向和沿厚度方向的应力三种。 1.纵向焊接残余应力 焊接过程一个不均匀加热和冷却的过程。在施焊时,焊件上产生不均匀的温度场, 焊缝及附近温度最高,可达 1600℃以上,其邻近区域则温度急剧下降。不均匀的温度场 将产生不均匀的膨胀。焊缝及附近高温处的钢材膨胀最大,由于受到两侧温度较低,膨 胀较小的钢材的限制,产生了热状态塑性压缩。焊缝冷压时,被塑性压缩的焊缝区趋向 于缩得比原始长度稍短,这种缩短变形受到焊缝两侧钢材的限制,使焊缝区产生纵向拉 应力。在低碳钢和低合金钢中,这种拉应力以常达到钢材的屈服强度。焊接残余应力是 荷载未作用时的内应力,因此会在焊件内部自相平衡,这就必然在距焊缝稍远区域应力。 用三块剪切下料的钢板焊成的工字形截面,纵向焊接残余应力分布(详见附图二十)。 2.横向残余应力 横向残余应力产生的原因有:①由于焊缝纵向收缩,两块钢板趋向于外弯成弓形的 趋势,但在实际上焊缝将两块钢板连成整体,不能分开,于是在焊缝中部将产生横向拉 应力,而在两端产生横向压应力。②焊缝在施焊过程中,先后冷却的时间不同,先焊的 焊缝已经凝固,且具有一定的强度,会阻止后焊焊缝在横向的自由膨胀,使其产生横向 的塑性压缩变形。当焊缝冷却时,后焊焊缝的收缩受到已凝固焊缝的限制而产生横向拉 应力,同时在先焊部分的焊缝内产生横向压应力。横向收缩引起的横向应力与施焊方向 及先后次序有关,焊缝的横向残余应力是上述两种原因产生的应力的合成(详见附图二 十一)。 3.沿焊缝厚度方向的残余应力 在厚钢板的连接中,焊缝需要多层施焊。因此,除有纵向和横向残余应力(  x y )

之外,沿厚度方向还存在着残余应力(a)(详见附图二十二)。这三种应力可能形成比较 严重的同号三轴应力;会大大降低结构连接的塑性。这就是焊接结构易发生脆性破坏的 原因之 以上分析是焊件在无外加约東情况下的焊接残余应力。若焊件施焊时处在约東状 态,如采用强大夹具或焊件本身刚度较大等,焊件将因不能自由伸缩变形而产生更大的 焊边残余应力,且随约東程度增加而增大。 二、焊接残余变形 如前所述,焊接过程中的局部加热和不均匀的冷却收缩,使焊件在产生残余应力的 同时还将伴随产生焊接残余变形,如纵向和横向收缩、弯曲变形、角变形、波浪变形和 扭曲变形等(详见附图二十三) 三、焊接残余应力和残余变形的影响 1.焊接应力对结构性能的影响 (1)静力强度对于具有一定塑性的钢材,在静力荷载作用下,因焊接残余应力是 自相平衡力系,它不影响结构的静力强度。 (2)刚度当残余应力与外加荷载的应力同号相加以后,该部分材料将提前进入屈 服阶段,局部形成塑性区而刚度降为零,继续增加的外力将仅由弹性区承担,因此构件 变形将加快,刚度降低 (3)构件的稳定性轴心受压、受弯和压弯构件等可能在荷载引起的压应力作用下, 而丧失整体稳定(即发生屈曲)。这些构件中荷载引起的压应力与截面残余压应力叠加时 会使部分截面提前达到受压屈服强度而进入塑性受压状态。这部分截面丧失了继续承受 荷载的能力,降低了刚度,对保证构件稳定也不再起作用,因而将降低构件的整体稳定 (4)疲劳强度和低温冷脆由于残余应力可能为三向号应力状态,材料在这种应力 状态下易转向脆性,使裂纹容易产生和开展,疲劳强度也因而降低。尤其在低温动载作 用下,更易导致低温脆性断裂。 2.焊接残余变形对结构的影响 焊接残余应力不仅影响结构的尺寸,使装配困难,影响使用质量,而且过大的变形 将显著降低结构的承载能力,甚至使结构不能使用。因此,在设计和制造时必须采取适 当措施来减小残余应力和残余变形的影响。如果残余变形超出验收规范的规定,必须加 以矫正,使其不致影响构件的使用和承载能力。 四、减小焊接残余应力和焊接残余变形的方法 残余应力和残余变形在焊接结构中是相互关连的。若为了减小残余变形,在施焊时 对焊件加强约束,则残余应力将随之增大。反之则相反。因此,随意加强约束并不尽合 理。正确的方法应从设计和制造、焊接工艺上采取一些有效措施。 1.合理的焊缝设计 (1)焊缝尺寸要适当,焊脚尺寸不宜过大,在构造容许范围内,宜用细长焊缝,不

- 26 - 之外,沿厚度方向还存在着残余应力(  z )(详见附图二十二)。这三种应力可能形成比较 严重的同号三轴应力;会大大降低结构连接的塑性。这就是焊接结构易发生脆性破坏的 原因之一。 以上分析是焊件在无外加约束情况下的焊接残余应力。若焊件施焊时处在约束状 态,如采用强大夹具或焊件本身刚度较大等,焊件将因不能自由伸缩变形而产生更大的 焊边残余应力,且随约束程度增加而增大。 二、焊接残余变形 如前所述,焊接过程中的局部加热和不均匀的冷却收缩,使焊件在产生残余应力的 同时还将伴随产生焊接残余变形,如纵向和横向收缩、弯曲变形、角变形、波浪变形和 扭曲变形等(详见附图二十三)。 三、焊接残余应力和残余变形的影响 1.焊接应力对结构性能的影响 (1)静力强度 对于具有一定塑性的钢材,在静力荷载作用下,因焊接残余应力是 自相平衡力系,它不影响结构的静力强度。 (2)刚度 当残余应力与外加荷载的应力同号相加以后,该部分材料将提前进入屈 服阶段,局部形成塑性区而刚度降为零,继续增加的外力将仅由弹性区承担,因此构件 变形将加快,刚度降低。 (3)构件的稳定性 轴心受压、受弯和压弯构件等可能在荷载引起的压应力作用下, 而丧失整体稳定(即发生屈曲)。这些构件中荷载引起的压应力与截面残余压应力叠加时, 会使部分截面提前达到受压屈服强度而进入塑性受压状态。这部分截面丧失了继续承受 荷载的能力,降低了刚度,对保证构件稳定也不再起作用,因而将降低构件的整体稳定 性。 (4)疲劳强度和低温冷脆 由于残余应力可能为三向号应力状态,材料在这种应力 状态下易转向脆性,使裂纹容易产生和开展,疲劳强度也因而降低。尤其在低温动载作 用下,更易导致低温脆性断裂。 2.焊接残余变形对结构的影响 焊接残余应力不仅影响结构的尺寸,使装配困难,影响使用质量,而且过大的变形 将显著降低结构的承载能力,甚至使结构不能使用。因此,在设计和制造时必须采取适 当措施来减小残余应力和残余变形的影响。如果残余变形超出验收规范的规定,必须加 以矫正,使其不致影响构件的使用和承载能力。 四、减小焊接残余应力和焊接残余变形的方法 残余应力和残余变形在焊接结构中是相互关连的。若为了减小残余变形,在施焊时 对焊件加强约束,则残余应力将随之增大。反之则相反。因此,随意加强约束并不尽合 理。正确的方法应从设计和制造、焊接工艺上采取一些有效措施。 1.合理的焊缝设计 (1) 焊缝尺寸要适当,焊脚尺寸不宜过大,在构造容许范围内,宜用细长焊缝,不

宜采用较粗短焊缝 (2)焊缝不宜过分集中,并应尽量避免三向焊缝交叉。当不可避免时,应采取措施 加以改善,也可使主要焊缝连续通过,而使次要焊缝中断(详见附图二十四) 2.合理安排焊接及制造工艺 (1)在焊接工艺上,应选择使焊件易于收缩并可减小残余应力的焊接次序,如分段 退焊、分层焊、对角跳焊和分块拼焊等(详见附图二十五)。 (2)在制造工艺上,可采用预先反变形、对厚钢板焊前预热(在焊道两侧各80~100mm 范围均匀加热到100℃~150℃)及焊后退火(加热至600℃后缓冷)或锤击法(用手锤轻 击焊缝表面使其延伸,以减小焊缝中部分残余拉应力)等 (3)对焊件尺寸收缩,应在下料时预加收缩余量。当焊接残余变形过大时,可采用 机械方法顶压进行冷矫正或局部加热后冷缩进行矫正。但对于低合金钢不宜使用锤击方 法进行矫正 第四节焊接连接的构造和计算 在钢结构的焊接连接较多的采用对接焊接和角接焊接,对接焊接传力直接、平顺 没有显著的集力集中现象。角焊缝构造简单,施工方便,但静力性能特别是动力性能较 、对接焊缝的计算 1.在与其长度方向垂直的轴心拉力或轴心压力作用下: 5∫,或f 式中N一一轴心拉力或压力 l——焊缝长度 L——焊缝厚度,在对接接头中为连接件的较小厚度,在T形接头中为腹板的厚 ∫"、∫"——对接焊缝的抗拉、抗压强度设计值 2在正应力和剪应力作用时 σ≤f"或f。 T≤ f∫ 式中∫"——对接焊缝的抗剪强度设计值。 在同时受有较大正应力和剪应力处,尚应按下式的折算应力计算其强度: r2≤1.1f" 1.当承受轴心力的板件用斜焊缝对接,焊缝与作用力间的夹角b符合1g0≤1.5时,其强度

- 27 - 宜采用较粗短焊缝。 (2) 焊缝不宜过分集中,并应尽量避免三向焊缝交叉。当不可避免时,应采取措施 加以改善,也可使主要焊缝连续通过,而使次要焊缝中断(详见附图二十四)。 2.合理安排焊接及制造工艺 (1)在焊接工艺上,应选择使焊件易于收缩并可减小残余应力的焊接次序,如分段 退焊、分层焊、对角跳焊和分块拼焊等(详见附图二十五)。 (2)在制造工艺上,可采用预先反变形、对厚钢板焊前预热(在焊道两侧各 80~100mm 范围均匀加热到 100℃~150℃ )及焊后退火(加热至 600℃后缓冷)或锤击法(用手锤轻 击焊缝表面使其延伸,以减小焊缝中部分残余拉应力)等。 (3) 对焊件尺寸收缩,应在下料时预加收缩余量。当焊接残余变形过大时,可采用 机械方法顶压进行冷矫正或局部加热后冷缩进行矫正。但对于低合金钢不宜使用锤击方 法进行矫正。 第四节 焊接连接的构造和计算 在钢结构的焊接连接较多的采用对接焊接和角接焊接,对接焊接传力直接、平顺、 没有显著的集力集中现象。角焊缝构造简单,施工方便,但静力性能特别是动力性能较 差。 一、对接焊缝的计算 1.在与其长度方向垂直的轴心拉力或轴心压力作用下: w c w t w f f l t N  =  或 式中 N ——轴心拉力或压力; w l ——焊缝长度; w t ——焊缝厚度,在对接接头中为连接件的较小厚度,在 T 形接头中为腹板的厚 度; w t f 、 w c f ——对接焊缝的抗拉、抗压强度设计值。 2.在正应力  和剪应力  作用时: w c w t   f 或f w v   f 式中 w v f ——对接焊缝的抗剪强度设计值。 在同时受有较大正应力和剪应力处,尚应按下式的折算应力计算其强度: w t 3 1.1 f 2 2  +   注:1.当承受轴心力的板件用斜焊缝对接,焊缝与作用力间的夹角  符合 tg  1.5 时,其强度

可不计算。 2.当对接焊缝无法采用引弧板施焊时,计算中应将每条焊缝的长度各减去10mm 3.在对接焊缝连接中,外力在各条对接焊缝中的分配以及对接焊缝中应力的分布和 大小,与连接的形式和焊缝所在部位的则度等因素有关,计算时应予以充分考虑。下表 列出了几种常用对接焊缝连接的焊缝强度计算公式 对接焊缝连接的强度计算方式 连接形式及受力情况 计算内容 计算公式 拉应力或 N 压应力 f"或f 6M 正应力 ≤∫"或" 剪应力 f n M 正应力 A S∫"或f 在正应力 和剪应力 |剪应力 z="≤f 都较大的 地方才需 折算应力 √or2+3r 要计算折 算应力,如 Es:|≤g|图中a点处 如连接在 ∥Sf"或 翼缘处无 正应力 横向加劲 肋加强,则 计算正应 剪应力 =nF|力G时也 不应计入 折算应力 +3r 翼缘水平 焊缝,即 ≤L.If" M、V—作用于连接处的轴心力、弯矩和剪力: 1——焊缝的计算长度 t——焊缝的厚度 A,、W一焊缝截面的面积和抵抗矩:

- 28 - 可不计算。 2.当对接焊缝无法采用引弧板施焊时,计算中应将每条焊缝的长度各减去 10mm。 3.在对接焊缝连接中,外力在各条对接焊缝中的分配以及对接焊缝中应力的分布和 大小,与连接的形式和焊缝所在部位的则度等因素有关,计算时应予以充分考虑。下表 列出了几种常用对接焊缝连接的焊缝强度计算公式。 对接焊缝连接的强度计算方式 项 次 连接形式及受力情况 计算内容 计 算 公 式 备 注 1 拉应力或 压应力 w c w t w f f l t N  =  或 2 正应力 剪应力 w c w t w f f l t M = 2  或 6  w v w f l t V =  1.5  3 正应力 剪应力 折算应力 w c w t w w f f W M A N  = +  或 w v w w f I t VS  =  2 1 2  1 + 3 w t w w w w f I t VS I My A N 3 1.1 2 1 2 1          +         = + 在正应力 和剪应力 都较大的 地方才需 要计算折 算应力,如 图中 a 点处 4 正应力 剪应力 折算应力 w c w t w f f W M  =  或 w v w f ht V A V = =  '  2 2  + 3 w t w f ht V W M 3 1.1 2 2        +         = 如连接在 翼缘处无 横向加劲 肋加强,则 计算正应 力  1 时也 不应计入 翼缘水平 焊缝,即 6 2 h t Ww = 表中: N 、 M 、V ——作用于连接处的轴心力、弯矩和剪力; w l ——焊缝的计算长度; t ——焊缝的厚度; Aw 、Ww ——焊缝截面的面积和抵抗矩;

S—一所求剪应力处以上的焊缝截面对中和轴的面积矩 Ⅰ.——焊缝截面的惯性矩 ya点到中和轴的距离 计算a点剪应力所用的焊缝截面的面积矩 A—竖直焊缝的截面积,Am=ht h——竖直焊缝的长度(即牛腿截面高度) 角焊缝的计算 角焊缝分直角焊缝和斜角角焊缝两大类。 1直角角焊缝的强度应按下列情况进行计算: (1)直接承受动力荷载结构中的直角角焊缝计算: a在通过焊缝形心的拉力、压力或剪力作用下: G,(或r)M ≤f 式中h一一角焊缝的有效厚度,对直角角焊缝取0.7hf,hf为较小焊脚尺寸 l——角焊缝的计算长度,对每条焊缝取其实际长度减去10mm fr-角焊缝的强度设计值。 b.在其它力或各种力综合作用下 ≤f∫r 式中可—按角焊缝的有效截面(九)计算,垂直于焊缝长度方向的应力 按角焊缝的有效截面计算,沿焊缝长度方向的剪应力。 (2)承受静力荷载和间接承受动力荷载结构中的直角角焊缝计算: a在与焊缝长度方向垂直的轴心力作用下: ≤1.22f b.在与焊缝长度方向平行的轴心力作用下 fr hl c在其它力或各种力综合作用下,G和的共同作用处: +r;≤ (4)在角焊缝连接中,外力在各条角焊缝中的分配与连接的形式和角焊缝所在部位 的刚度等因素有关,计算时应予充分考虑。下表列出了几种常用角焊缝连接的直角角焊 强度计算公式

- 29 - w S ——所求剪应力处以上的焊缝截面对中和轴的面积矩; w I ——焊缝截面的惯性矩; 1 y ——a 点到中和轴的距离; Sw1——计算 a 点剪应力所用的焊缝截面的面积矩; A w ' ——竖直焊缝的截面积, A ht ' w = ; h ——竖直焊缝的长度(即牛腿截面高度)。 二、角焊缝的计算 角焊缝分直角焊缝和斜角角焊缝两大类。 1.直角角焊缝的强度应按下列情况进行计算: (1)直接承受动力荷载结构中的直角角焊缝计算: a.在通过焊缝形心的拉力、压力或剪力作用下: w f o w f f f h l N  (或 ) =  式中 o h ——角焊缝的有效厚度,对直角角焊缝取 0.7hf,hf 为较小焊脚尺寸; w l ——角焊缝的计算长度,对每条焊缝取其实际长度减去 10mm; w f f ——角焊缝的强度设计值。 b.在其它力或各种力综合作用下, w f f f +  f 2 2   式中  f ——按角焊缝的有效截面( e w h l )计算,垂直于焊缝长度方向的应力; t  ——按角焊缝的有效截面计算,沿焊缝长度方向的剪应力。 (2)承受静力荷载和间接承受动力荷载结构中的直角角焊缝计算: a.在与焊缝长度方向垂直的轴心力作用下: w f e w f f h l N  =  1.22 b.在与焊缝长度方向平行的轴心力作用下: w f e w f f h l N  =  c.在其它力或各种力综合作用下, f f  和 的共同作用处: w f f f +  f         2 2 1.22   (4)在角焊缝连接中,外力在各条角焊缝中的分配与连接的形式和角焊缝所在部位 的刚度等因素有关,计算时应予充分考虑。下表列出了几种常用角焊缝连接的直角角焊 缝强度计算公式

点击下载完整版文档(DOC)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
共24页,试读已结束,阅读完整版请下载
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有