当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

上海交通大学:《材料热力学》教学资源_2014课件_lecture 3 second law I

资源类别:文库,文档格式:PDF,文档页数:42,文件大小:1.76MB,团购合买
点击下载完整版文档(PDF)

Contents of Today S.J.T.0. Phase Transformation and Applications Continue /Review previous 2nd law Entropy Reversible process Carnot cycle etc. SJTU Thermodynamics of Materials Fall 2012 ©X.J.Jin Lecture 3 Second law I

Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Fall 2012 © X. J. Jin Lecture 3 Second law I Contents of Today Continue / Review previous 2nd law Entropy Reversible process Carnot cycle etc

Review Key points S.J.T.0. Phase Transformation and Applications 1.Adiabatic process:Joule-Thomson expansion 2.Equations of state 3.Adiabatic compression or expansion 4.Enthalpies of formation 5.Enthalpy changes in chemical reactions 6.Adiabatic temperature change in chemical reactions SJTU Thermodynamics of Materials Fall 2012 ©X.J.Jin Lecture 3 Second law I

Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Fall 2012 © X. J. Jin Lecture 3 Second law I Review / Key points 1. Adiabatic process: Joule-Thomson expansion 2. Equations of state 3. Adiabatic compression or expansion 4. Enthalpies of formation 5. Enthalpy changes in chemical reactions 6. Adiabatic temperature change in chemical reactions

1.17 Adiabatic Compression or Expansion (1) S.J.T.0. Phase Transformation and Applications Air arises rapidly (adiabatically)up a mountainside At the higher altitude,the pressure is lower,and the temperature is also lower. Adiabatic Reversible:Presisting=Psystem Ideal gas System boundary 0+r=d0 -Pdv dU =nCrdT P system X Presisting PV=nRT Pav+Vdp nRdT 绝热压缩和膨胀 SJTU Thermodynamics of Materials Fall 2012 ©X.J.Jin Lecture 3 Second law I

Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Fall 2012 © X. J. Jin Lecture 3 Second law I 1.17 Adiabatic Compression or Expansion (1) Air arises rapidly (adiabatically) up a mountainside. At the higher altitude, the pressure is lower, and the temperature is also lower. Presisting System boundary Psystem Adiabatic Reversible: Presisting=Psystem Ideal gas δQ +δW = dU − PdV = dU = nCV dT PdV VdP nRdT PV nRT + = = 绝热压缩和膨胀

1.17 Adiabatic Compression or Expansion (4) S.J.T.0. Phase Transformation and Applications Helium,ideal gas Valve First gas,? Insulated 50-liter,25 C,20 atm Quench chamber,?10 atm (L,),-(H。)6im。+8Q+8w=dU=0 System -boundary om m。 H,=H。 T=T, H(T,P)=H(T) Quench chamber.?10 atm,Close system Define the system as the quantity of gas remaining in the tank when the pressure reaches 10 atm Adiabatic expansion T3=T(0.758)=298×0.758=226K 226K/-47C SJTU Thermodynamics of Materials Fall 2012 ©X.J.Jin Lecture 3 Second law I

Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Fall 2012 © X. J. Jin Lecture 3 Second law I 1.17 Adiabatic Compression or Expansion (4) Helium, ideal gas Insulated 50-liter, 25 °C, 20 atm Quench chamber, ?, 10 atm (H ) m − (H ) m + Q + W = dU = 0 i δ i o δ o δ δ Valve H i = H o ( ) 5 2 0.4 1 2 1 2 ) (0.5) 2010 = ( ) = ( = R R CR P PP TT T2 = T1(0.758) = 298×0.758 = 226 K 226K / -47 °C System boundary δmi δmo First gas, ? Ti = To Quench chamber, ?, 10 atm, Close system H(T, P) = H(T) Define the system as the quantity of gas remaining in the tank when the pressure reaches 10 atm Adiabatic expansion

Questions and Answers S.J.T.0. Phase Transformation and Applications 80=dU=CvdT dU=CdT V1,T1 V2,T2 d CdT dU =0 Ideal gas V1,T2 =0 20 atm 10 atm 20 atm 50L 50L ?L 10 atm 25C 25℃ 50L Adiabatic ? expansion SJTU Thermodynamics of Materials Fall 2012 ©X.J.Jin Lecture 3 Second law I

Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Fall 2012 © X. J. Jin Lecture 3 Second law I Questions and Answers V1,T1 V2,T2 V1,T2 dU = 0 Ideal gas ⎟ = 0 ⎠⎞ ⎜⎝⎛ ∂∂V T U dU = CV dT Q dU C dT dU = CV dT δ = = V 20 atm 50 L 25 °C 10 atm 50 L ? 10 atm 50 L ? 20 atm ? L 25 °C Adiabatic expansion

1.20 Adiabatic Temperature Change in Chemical Reactions(1) S.J.T.0. Phase Transformation and Applications Adiabatic flame temperature Fuel gas 20% Carbon monoxide (CO) 30% Carbon dioxide(CO2) 50% Nitrogen (N2) C0+20,→c0, Gas Moles in Moles out Exit gas composition (% co 0.20 0 C02 0.30 0.50 36 02 0.10 0 N2 0.5+0.1×(79/21) 0.88 64 Total 1.38 100 SJTU Thermodynamics of Materials Fall 2012 ©X.J.Jin Lecture 3 Second law I

Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Fall 2012 © X. J. Jin Lecture 3 Second law I 1.20 Adiabatic Temperature Change in Chemical Reactions (1) Adiabatic flame temperature Gas Moles in Moles out Exit gas composition (%) CO 0.20 0 CO2 0.30 0.50 36 O2 0.10 0 N2 0.5+0.1×(79/21) 0.88 64 Total 1.38 100 Fuel gas 20 % Carbon monoxide (CO) 30 % Carbon dioxide (CO2) 50 % Nitrogen (N2) 2 2 2 1 CO + O → CO

1.20 Adiabatic Temperature Change in Chemical Reactions(3) S.J.T.0. Phase Transformation and Applications ∑H。n,=∑Hn 0+0→c0, △H/.c0.298=-110,500J Cp.N:=34.3 J/(mol.K) △Hf,c0,298=-393,500J Cp.co.=57.3 J/(mol.K) T=1260K AFT:adiabatic flame temperature The maximum temperature of these gases leaving the burner. Moisture,combustion reaction completion or not. Chemical equilibrium SJTU Thermodynamics of Materials Fall 2012 ©X.J.Jin Lecture 3 Second law I

Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Fall 2012 © X. J. Jin Lecture 3 Second law I 1.20 Adiabatic Temperature Change in Chemical Reactions (3) ∑ Hono = ∑ Hini 2 2 21 CO + O → CO H J Δ f ,CO,298 = −110,500 H J f ,CO ,298 393,500 2 Δ = − C J (mol K) P N = 34.3 / ⋅ 2 , C J (mol K) P CO = 57.3 / ⋅ 2 , T =1260 K AFT: adiabatic flame temperature The maximum temperature of these gases leaving the burner. Moisture, combustion reaction completion or not. Chemical equilibrium ?

Index of nomenclature S.J.T.0. Phase Transformation and Applications Adiabatic绝热 Equations of State状态方程 Non-ideal Gases非理想气体 Enthalpies of Formation生成焓 Exothermic:放热 Endothermic:吸热 Enthalpy of combusion: 燃烧焓 Enthalpy Change in Chemical Reactions化学反应的焓变 AFT:adiabatic flame temperature绝热燃烧温度 SJTU Thermodynamics of Materials Fall 2012 ©X.J.Jin Lecture 3 Second law I

Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Fall 2012 © X. J. Jin Lecture 3 Second law I Index of nomenclature Adiabatic绝热 Equations of State状态方程 Non-ideal Gases非理想气体 Enthalpies of Formation生成焓 Exothermic: 放热 Endothermic: 吸热 Enthalpy of combusion:燃烧焓 Enthalpy Change in Chemical Reactions化学反应的焓变 AFT: adiabatic flame temperature绝热燃烧温度 Index of nomenclature

Index of nomenclature S.J.T.0. Phase Transformation and Applications Second Law第二定律 Entropy熵 Reversible process可逆过程 Carnot cycle卡诺循环 SJTU Thermodynamics of Materials Fall 2012 ©X.J.Jin Lecture 3 Second law I

Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Fall 2012 © X. J. Jin Lecture 3 Second law I Index of nomenclature Second Law第二定律 Entropy熵 Reversible process可逆过程 Carnot cycle卡诺循环 Index of nomenclature

The Second Law S.J.T.0. Phase Transformation and Applications The First Law:the conservation of energy and energy transfer in terms of heat and work. Energy is a state function. The Second Law:ENTROPY. Overview Heat engines,devices that convert thermal energy (heat)into mechanical energy (work). The first law places no limits on the amounts that can be converted. The second law is concerned with limits on the conversion of"heat"into “work”by heat engines. 1824,a French engineer,Sadi Carnot,idealized heat engine. P.W.Atkins,The Second Law,Scientific American Books,1984 SJTU Thermodynamics of Materials Fall 2012 ©X.J.Jin Lecture 3 Second law I

Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Fall 2012 © X. J. Jin Lecture 3 Second law I The Second Law The First Law: the conservation of energy and energy transfer in terms of heat and work. Energy is a state function. The Second Law: ENTROPY. Overview Heat engines, devices that convert thermal energy (heat) into mechanical energy (work). The first law places no limits on the amounts that can be converted. The second law is concerned with limits on the conversion of “heat” into “work” by heat engines. 1824, a French engineer, Sadi Carnot, idealized heat engine. P. W. Atkins, The Second Law, Scientific American Books, 1984

点击下载完整版文档(PDF)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
共42页,可试读14页,点击继续阅读 ↓↓
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有