生物化学重点 第一章绪论 生物化学的的概念 生物化学( biochem stry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之 间的一门边缘学科 、生物化学的发展 1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体 的分泌物和排泄物 2.动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学 物质的代谢途径 3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。 三、生物化学研究的主要方面: 1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些 低分子物质 2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是 在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方 面的内容。 3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而 构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。 4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。 5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容 第二章蛋白质的结构与功能 氨基酸 1.结构特点:氨基酸( am ino acid)是蛋白质分子的基本组成单位。构成天然蛋白质分子的氨基酸约有20种 除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸 2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种):②极性中性氨 基酸(7种):③酸性氨基酸(Gu和Asp):④碱性氨基酸(Lys、Arg和His) 二、肽键与肽链 肽键( peptide bond)是指由一分子氨基酸的a-羧基与另一分子氨基酸的a-氨基经脱水而形成的共价键 (-CO-NH-)。氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端: 即自由氨基端(N端)与自由羧基端(C端),肽链的方向是N端→C端 三、肽键平面(肽单位) 肽键具有部分双键的性质,不能自由旋转:组成肽键的四个原子及其相邻的两个a碳原子处在同一个平面上,为 刚性平面结构,称为肽键平面 四、蛋白质的分子结构: 蛋白质的分子结构可人为分为一级、二级、三级和四级结构等层次。一级结构为线状结构,二、三、四级结构为 空间结构
1 生物化学重点 第一章 绪论 一、生物化学的的概念: 生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之 间的一门边缘学科。 二、生物化学的发展: 1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体 的分泌物和排泄物。 2.动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学 物质的代谢途径。 3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。 三、生物化学研究的主要方面: 1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些 低分子物质。 2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是 在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方 面的内容。 3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而 构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。 4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。 5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。 第二章 蛋白质的结构与功能 一、氨基酸: 1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。构成天然蛋白质分子的氨基酸约有 20 种, 除脯氨酸为 α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为 L-α-氨基酸。 2.分类:根据氨基酸的 R 基团的极性大小可将氨基酸分为四类:① 非极性中性氨基酸(8 种);② 极性中性氨 基酸(7 种);③ 酸性氨基酸(Glu 和 Asp);④ 碱性氨基酸(Lys、Arg 和 His)。 二、 肽键与肽链: 肽键(peptide bond)是指由一分子氨基酸的 α-羧基与另一分子氨基酸的 α-氨基经脱水而形成的共价键 (-CO-NH-)。氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端: 即自由氨基端(N 端)与自由羧基端(C 端),肽链的方向是 N 端→C 端。 三、肽键平面(肽单位): 肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个 α 碳原子处在同一个平面上,为 刚性平面结构,称为肽键平面。 四、蛋白质的分子结构: 蛋白质的分子结构可人为分为一级、二级、三级和四级结构等层次。一级结构为线状结构,二、三、四级结构为 空间结构
1.一级结构:指多肽链中氨基酸的排列顺序,其维系键是肽键。蛋白质的一级结构决定其空间结构。 2.二级结构:指多肽链主链骨架盘绕折叠而形成的构象,借氢键维系。主要有以下几种类型: 1]a-螺旋:其结构特征为:①主链骨架围绕中心轴盘绕形成右手螺旋;②螺旋每上升一圈是3.6个氨基酸残基, 螺距为0.54nm:③相邻螺旋圈之间形成许多氢键:④侧链基团位于螺旋的外侧 影响α-螺旋形成的因素主要是:①存在侧链基团较大的氨基酸残基:②连续存在带相同电荷的氨基酸残基 ③存在脯氨酸残基 折叠:其结构特征为:①若干条肽链或肽段平行或反平行排列成片:②所有肽键的C=O和N一H形成链 间氢键:③侧链基团分别交替位于片层的上、下方 3)β-转角:多肽链180°回折部分,通常由四个氨基酸残基构成,借1、4残基之间形成氢键维系 4)无规卷曲:主链骨架无规律盘绕的部分 3.三级结构:指多肽链所有原子的空间排布。其维系键主要是非共价键(次级键):氢键、疏水键、范德华力 离子键等,也可涉及二硫键。 4.四级结构:指亚基之间的立体排布、接触部位的布局等,其维系键为非共价键。亚基是指参与构成蛋白质四 级结构的而又具有独立三级结构的多肽链。 五、蛋白质的理化性质: 1.两性解离与等电点:蛋白质分子中仍然存在游离的氨基和游离的羧基,因此蛋白质与氨基酸一样具有两性解 离的性质。蛋白质分子所带正、负电荷相等时溶液的pH值称为蛋白质的等电点 2.蛋白质的胶体性质:蛋白质具有亲水溶胶的性质。蛋白质分子表面的水化膜和表面电荷是稳定蛋白质亲水溶 胶的两个重要因素。 3.蛋白质的紫外吸收:蛋白质分子中的色氨酸、酪氨酸和苯丙氨酸残基对紫外光有吸收,以色氨酸吸收最强, 最大吸收峰为280nm。 4.蛋白质的变性:蛋白质在某些理化因素的作用下,其特定的空间结构被破坏而导致其理化性质改变及生物活 性丧失,这种现象称为蛋白质的变性。引起蛋白质变性的因素有:高温、高压、电离辐射、超声波、紫外线及有 机溶剂、重金属盐、强酸强碱等。绝大多数蛋白质分子的变性是不可逆的 六、蛋白质的分离与纯化 1.盐析与有机溶剂沉淀:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀 析出,称为盐析。常用的中性盐有:硫酸铵、氯化钠、硫酸钠等。盐析时,溶液的pH在蛋白质的等电点处效果 最好。凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀。 2.电泳:蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动。电泳迁移率的大 小主要取决于蛋白质分子所带电荷量以及分子大小。 3.透析:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开。 4.层析:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行 分离。主要有离子交换层析,凝胶层析,吸附层析及亲和层析等,其中凝胶层析可用于测定蛋白质的分子量 5.超速离心:利用物质密度的不同,经超速离心后,分布于不同的液层而分离。超速离心也可用来测定蛋白质 的分子量,蛋白质的分子量与其沉降系数S成正比 七、氨基酸顺序分析: 蛋白质多肽链的氨基酸顺序分析,即蛋白质一级结构的测定,主要有以下几个步骤 1.分离纯化蛋白质,得到一定量的蛋白质纯品: 2.取一定量的样品进行完全水解,再测定蛋白质的氨基酸组成 3.分析蛋白质的N-端和C-端氨基酸 4.采用特异性的酶(如胰凝乳蛋白酶)或化学试剂(如溴化氰)将蛋白质处理为若干条肽段
2 1.一级结构:指多肽链中氨基酸的排列顺序,其维系键是肽键。蛋白质的一级结构决定其空间结构。 2.二级结构:指多肽链主链骨架盘绕折叠而形成的构象,借氢键维系。主要有以下几种类型: ⑴α-螺旋:其结构特征为:①主链骨架围绕中心轴盘绕形成右手螺旋;②螺旋每上升一圈是 3.6 个氨基酸残基, 螺距为 0.54nm;③ 相邻螺旋圈之间形成许多氢键;④ 侧链基团位于螺旋的外侧。 影响 α-螺旋形成的因素主要是:① 存在侧链基团较大的氨基酸残基;② 连续存在带相同电荷的氨基酸残基; ③ 存在脯氨酸残基。 ⑵β-折叠:其结构特征为:① 若干条肽链或肽段平行或反平行排列成片;② 所有肽键的 C=O 和 N—H 形成链 间氢键;③侧链基团分别交替位于片层的上、下方。 ⑶β-转角:多肽链 180°回折部分,通常由四个氨基酸残基构成,借 1、4 残基之间形成氢键维系。 ⑷无规卷曲:主链骨架无规律盘绕的部分。 3.三级结构:指多肽链所有原子的空间排布。其维系键主要是非共价键(次级键):氢键、疏水键、范德华力、 离子键等,也可涉及二硫键。 4.四级结构:指亚基之间的立体排布、接触部位的布局等,其维系键为非共价键。亚基是指参与构成蛋白质四 级结构的而又具有独立三级结构的多肽链。 五、 蛋白质的理化性质: 1.两性解离与等电点:蛋白质分子中仍然存在游离的氨基和游离的羧基,因此蛋白质与氨基酸一样具有两性解 离的性质。蛋白质分子所带正、负电荷相等时溶液的 pH 值称为蛋白质的等电点。 2.蛋白质的胶体性质:蛋白质具有亲水溶胶的性质。蛋白质分子表面的水化膜和表面电荷是稳定蛋白质亲水溶 胶的两个重要因素。 3.蛋白质的紫外吸收:蛋白质分子中的色氨酸、酪氨酸和苯丙氨酸残基对紫外光有吸收,以色氨酸吸收最强, 最大吸收峰为 280nm。 4.蛋白质的变性:蛋白质在某些理化因素的作用下,其特定的空间结构被破坏而导致其理化性质改变及生物活 性丧失,这种现象称为蛋白质的变性。引起蛋白质变性的因素有:高温、高压、电离辐射、超声波、紫外线及有 机溶剂、重金属盐、强酸强碱等。绝大多数蛋白质分子的变性是不可逆的。 六、蛋白质的分离与纯化: 1.盐析与有机溶剂沉淀:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀 析出,称为盐析。常用的中性盐有:硫酸铵、氯化钠、硫酸钠等。盐析时,溶液的 pH 在蛋白质的等电点处效果 最好。凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀。 2.电泳:蛋白质分子在高于或低于其 pI 的溶液中带净的负或正电荷,因此在电场中可以移动。电泳迁移率的大 小主要取决于蛋白质分子所带电荷量以及分子大小。 3.透析:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开。 4.层析:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行 分离。主要有离子交换层析,凝胶层析,吸附层析及亲和层析等,其中凝胶层析可用于测定蛋白质的分子量。 5.超速离心:利用物质密度的不同,经超速离心后,分布于不同的液层而分离。超速离心也可用来测定蛋白质 的分子量,蛋白质的分子量与其沉降系数 S 成正比。 七、氨基酸顺序分析: 蛋白质多肽链的氨基酸顺序分析,即蛋白质一级结构的测定,主要有以下几个步骤: 1. 分离纯化蛋白质,得到一定量的蛋白质纯品; 2. 取一定量的样品进行完全水解,再测定蛋白质的氨基酸组成; 3. 分析蛋白质的 N-端和 C-端氨基酸; 4. 采用特异性的酶(如胰凝乳蛋白酶)或化学试剂(如溴化氰)将蛋白质处理为若干条肽段;
5.分离纯化单一肽段: 6.测定各条肽段的氨基酸顺序。一般采用 Edm an降解法,用异硫氰酸苯酯进行反应,将氨基酸降解后,逐一 进行测定: 7.至少用两种不同的方法处理蛋白质,分别得到其肽段的氨基酸顺序: 8.将两套不同肽段的氨基酸顺序进行比较,以获得完整的蛋白质分子的氨基酸顺序。 第三章核酸的结构与功能 核酸的化学组成 1.含氮碱:参与核酸和核苷酸构成的含氮碱主要分为嘌呤碱和嘧啶碱两大类。组成核苷酸的嘧啶碱主要有三种 尿嘧啶(U)、胞嘧啶(C)和胸腺嘧啶(T),它们都是嘧啶的衍生物。组成核苷酸的嘌呤碱主要有两种· 腺嘌呤(A)和鸟嘌呤(G),它们都是嘌呤的衍生物。 2.戊糖:核苷酸中的戊糖主要有两种,即β-D-核糖与β-D-2-脱氧核糖,由此构成的核苷酸也分为核糖核苷酸 与脱氧核糖核酸两大类 3.核苷:核苷是由戊糖与含氮碱基经脱水缩合而生成的化合物。通常是由核糖或脱氧核糖的C1′β-羟基与嘧啶 碱N或嘌呤碱N9进行缩合,故生成的化学键称为β,N糖苷键。其中由D-核糖生成者称为核糖核苷,而由脱 氧核糖生成者则称为脱氧核糖核苷。由”稀有碱基”所生成的核苷称为稀有核苷”。假尿苷()就是由D-核糖的 C1′与尿嘧啶的C5相连而生成的核苷。 、核苷酸的结构与命名 核苷酸是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包括核糖核苷酸和脱氧核糖核酸两大类。最常 见的核苷酸为5′-核苷酸(5′常被省略)。5′核苷酸又可按其在5'位缩合的磷酸基的多少,分为一磷酸核苷(核 苷酸)、二磷酸核苷和三磷酸核苷。 此外,生物体内还存在一些特殊的环核苷酸,常见的为环一磷酸腺苷(CAMP)和环一磷酸鸟苷(cGMP), 它们通常是作为激素作用的第二信使。 核苷酸通常使用缩写符号进行命名。第一位符号用小写字母d代表脱氧,第二位用大写字母代表碱基,第三 位用大写字母代表磷酸基的数目,第四位用大写字母P代表磷酸。 核酸的一级结构 核苷酸通过3′5′-磷酸二酯键连接起来形成的不含侧链的多核苷酸长链化合物就称为核酸。核酸具有方向性 5′-位上具有自由磷酸基的末端称为5′-端,3′-位上具有自由羟基的末端称为3-端 DNA由dAMP、dGMP、dCMP和dTMP四种脱氧核糖核苷酸所组成。DNA的一级结构就是指DNA分子 中脱氧核糖核苷酸的种类、数目、排列顺序及连接方式。RNA由AMP,GMP,CMP,UMP四种核糖核苷酸组 成。RNA的一级结构就是指RNA分子中核糖核苷酸的种类、数目、排列顺序及连接方式 四、DNA的二级结构 DNA双螺旋结构是DNA二级结构的一种重要形式,它是 Watson和 Crick两位科学家于1953年提出来 的一种结构模型,其主要实验依据是 Chargaff研究小组对DNA的化学组成进行的分析研究,即DNA分子中四 种碱基的摩尔百分比为A=T、G=C、A+G=T+C( Chargaff原则),以及由 Wilkins研究小组完成的DNA晶 体Ⅹ线衍射图谱分析 天然DNA的二级结构以B型为主,其结构特征为:①为右手双螺旋,两条链以反平行方式排列:②主链 位于螺旋外侧,碱基位于内侧:③两条链间存在碱基互补,通过氢键连系,且AT、G-C(碱基互补原则):④ 螺旋的稳定因素为氢键和碱基堆砌力:⑤螺旋的螺距为3.4ηm,直径为2nm 五、DNA的超螺旋结构
3 5. 分离纯化单一肽段; 6. 测定各条肽段的氨基酸顺序。一般采用 Edman 降解法,用异硫氰酸苯酯进行反应,将氨基酸降解后,逐一 进行测定; 7. 至少用两种不同的方法处理蛋白质,分别得到其肽段的氨基酸顺序; 8. 将两套不同肽段的氨基酸顺序进行比较,以获得完整的蛋白质分子的氨基酸顺序。 第三章 核酸的结构与功能 一、核酸的化学组成: 1.含氮碱:参与核酸和核苷酸构成的含氮碱主要分为嘌呤碱和嘧啶碱两大类。组成核苷酸的嘧啶碱主要有三种 ——尿嘧啶(U)、胞嘧啶(C)和胸腺嘧啶(T),它们都是嘧啶的衍生物。组成核苷酸的嘌呤碱主要有两种—— 腺嘌呤(A)和鸟嘌呤(G),它们都是嘌呤的衍生物。 2.戊糖:核苷酸中的戊糖主要有两种,即 β-D-核糖与 β-D-2-脱氧核糖,由此构成的核苷酸也分为核糖核苷酸 与脱氧核糖核酸两大类。 3.核苷:核苷是由戊糖与含氮碱基经脱水缩合而生成的化合物。通常是由核糖或脱氧核糖的 C1’ β-羟基与嘧啶 碱 N1 或嘌呤碱 N9 进行缩合,故生成的化学键称为 β,N 糖苷键。其中由 D-核糖生成者称为核糖核苷,而由脱 氧核糖生成者则称为脱氧核糖核苷。由“稀有碱基”所生成的核苷称为“稀有核苷”。假尿苷(ψ)就是由 D-核糖的 C1’ 与尿嘧啶的 C5 相连而生成的核苷。 二、核苷酸的结构与命名: 核苷酸是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包括核糖核苷酸和脱氧核糖核酸两大类。最常 见的核苷酸为 5’-核苷酸(5’ 常被省略)。5’-核苷酸又可按其在 5’位缩合的磷酸基的多少,分为一磷酸核苷(核 苷酸)、二磷酸核苷和三磷酸核苷。 此外,生物体内还存在一些特殊的环核苷酸,常见的为环一磷酸腺苷(cAMP)和环一磷酸鸟苷(cGMP), 它们通常是作为激素作用的第二信使。 核苷酸通常使用缩写符号进行命名。第一位符号用小写字母 d 代表脱氧,第二位用大写字母代表碱基,第三 位用大写字母代表磷酸基的数目,第四位用大写字母 P 代表磷酸。 三、核酸的一级结构: 核苷酸通过 3’,5’-磷酸二酯键连接起来形成的不含侧链的多核苷酸长链化合物就称为核酸。核酸具有方向性, 5’-位上具有自由磷酸基的末端称为 5’-端,3’-位上具有自由羟基的末端称为 3’-端。 DNA 由 dAMP、dGMP、dCMP 和 dTMP 四种脱氧核糖核苷酸所组成。DNA 的一级结构就是指 DNA 分子 中脱氧核糖核苷酸的种类、数目、排列顺序及连接方式。RNA 由 AMP,GMP,CMP,UMP 四种核糖核苷酸组 成。RNA 的一级结构就是指 RNA 分子中核糖核苷酸的种类、数目、排列顺序及连接方式。 四、DNA 的二级结构: DNA 双螺旋结构是 DNA 二级结构的一种重要形式,它是 Watson 和 Crick 两位科学家于 1953 年提出来 的一种结构模型,其主要实验依据是 Chargaff 研究小组对 DNA 的化学组成进行的分析研究,即 DNA 分子中四 种碱基的摩尔百分比为 A=T、G=C、A+G=T+C(Chargaff 原则),以及由 Wilkins 研究小组完成的 DNA 晶 体 X 线衍射图谱分析。 天然 DNA 的二级结构以 B 型为主,其结构特征为:①为右手双螺旋,两条链以反平行方式排列;②主链 位于螺旋外侧,碱基位于内侧;③两条链间存在碱基互补,通过氢键连系,且 A-T、G-C(碱基互补原则); ④ 螺旋的稳定因素为氢键和碱基堆砌力;⑤螺旋的螺距为 3.4nm,直径为 2nm。 五、DNA 的超螺旋结构:
双螺旋的DNA分子进一步盘旋形成的超螺旋结构称为DNA的三级结构。 绝大多数原核生物的DNA都是共价封闭的环状双螺旋,其三级结构呈麻花状。 在真核生物中,双螺旋的DNA分子围绕一蛋白质八聚体进行盘绕,从而形成特殊的串珠状结构,称为核小体 核小体结构属于DNA的三级结构 六、DNA的功能 DNA的基本功能是作为遗传信息的载体,为生物遗传信息复制以及基因信息的转录提供模板。 DNA分子中具有特定生物学功能的片段称为基因(gene)。一个生物体的全部DNA序列称为基因组 ( genome)。基因组的大小与生物的复杂性有关 七、RNA的空间结构与功能 RNA分子的种类较多,分子大小变化较大,功能多样化。RNA通常以单链存在,但也可形成局部的双螺旋 结构 1.mRNA的结构与功能:mRNA是单链核酸,其在真核生物中的初级产物称为 HnRNA。大多数真核成熟的 mRNA分子具有典型的5′-端的7甲基鸟苷三磷酸(m7GTP)帽子结构和3′-端的多聚腺苷酸( polyA)尾巴结构 mRNA的功能是为蛋白质的合成提供模板,分子中带有遗传密码。mRNA分子中每三个相邻的核苷酸组成一组, 在蛋白质翻译合成时代表一个特定的氨基酸,这种核苷酸三联体称为遗传密码( coden)。 2.tRNA的结构与功能:tRNA是分子最小,但含有稀有碱基最多的RNA。tRNA的二级结构由于局部双螺旋 的形成而表现为”三叶草形,故称为”三叶草”结构,可分为五个部分:①氨基酸臂:由tRNA的5′-端和3-端构 成的局部双螺旋,3′-端都带有-CCA-OH顺序,可与氨基酸结合而携带氨基酸。②DHU臂:含有二氢尿嘧啶核 苷,与氨基酰tRNA合成酶的结合有关。③反密码臂:其反密码环中部的三个核苷酸组成三联体,在蛋白质生物 合成中,可以用来识别mRNA上相应的密码,故称为反密码( anticodon)。④TC臂:含保守的TuC顺序, 可以识别核蛋白体上的rRNA,促使tRNA与核蛋白体结合。⑤可变臂:位于TψC臂和反密码臂之间,功能不 3.rRNA的结构与功能:rRNA是细胞中含量最多的RNA,可与蛋白质一起构成核蛋白体,作为蛋白质生物合 成的场所。原核生物中的rRNA有三种:55,165,235。真核生物中的rRNA有四种:5s,5.8s,18s,28s 具有自身催化作用的RNA称为核酶( ribozyme),核酶通常具有特殊的分子结构,如锤头结构 九、核酸的一般理化性质: 核酸具有酸性:粘度大:能吸收紫外光,最大吸收峰为260nm 十、DNA的变性 在理化因素作用下,DNA双螺旋的两条互补链松散而分开成为单链,从而导致DNA的理化性质及生物学性 质发生改变,这种现象称为DNA的变性 引起DNA变性的因素主要有:①高温,②强酸强碱,③有机溶剂等。DNA变性后的性质改变:①增色效应: 指DNA变性后对260nm紫外光的光吸收度增加的现象:②旋光性下降:③粘度降低:④生物功能丧失或改变。 加热DNA溶液,使其对260nm紫外光的吸收度突然增加,达到其最大值一半时的温度,就是D№A的变 性温度(融解温度,Tm)。Tm的高低与DNA分子中G+C的含量有关,G+C的含量越高,则Tm越高。 十一、DNA的复性与分子杂交 将变性DNA经退火处理,使其重新形成双螺旋结构的过程,称为DNA的复性 条来源不同的单链核酸(DNA或RNA),只要它们有大致相同的互补碱基顺序,以退火处理即可复性
4 双螺旋的 DNA 分子进一步盘旋形成的超螺旋结构称为 DNA 的三级结构。 绝大多数原核生物的 DNA 都是共价封闭的环状双螺旋,其三级结构呈麻花状。 在真核生物中,双螺旋的 DNA 分子围绕一蛋白质八聚体进行盘绕,从而形成特殊的串珠状结构,称为核小体。 核小体结构属于 DNA 的三级结构。 六、DNA 的功能: DNA 的基本功能是作为遗传信息的载体,为生物遗传信息复制以及基因信息的转录提供模板。 DNA 分子中具有特定生物学功能的片段称为基因(gene)。一个生物体的全部 DNA 序列称为基因组 (genome)。基因组的大小与生物的复杂性有关。 七、RNA 的空间结构与功能: RNA 分子的种类较多,分子大小变化较大,功能多样化。RNA 通常以单链存在,但也可形成局部的双螺旋 结构。 1.mRNA 的结构与功能:mRNA 是单链核酸,其在真核生物中的初级产物称为 HnRNA。大多数真核成熟的 mRNA 分子具有典型的 5’-端的 7-甲基鸟苷三磷酸(m7GTP)帽子结构和 3’-端的多聚腺苷酸(polyA)尾巴结构。 mRNA 的功能是为蛋白质的合成提供模板,分子中带有遗传密码。mRNA 分子中每三个相邻的核苷酸组成一组, 在蛋白质翻译合成时代表一个特定的氨基酸,这种核苷酸三联体称为遗传密码(coden)。 2.tRNA 的结构与功能:tRNA 是分子最小,但含有稀有碱基最多的 RNA。tRNA 的二级结构由于局部双螺旋 的形成而表现为“三叶草”形,故称为“三叶草”结构,可分为五个部分:①氨基酸臂:由 tRNA 的 5’-端和 3’-端构 成的局部双螺旋,3’-端都带有-CCA-OH 顺序,可与氨基酸结合而携带氨基酸。②DHU 臂:含有二氢尿嘧啶核 苷,与氨基酰 tRNA 合成酶的结合有关。③反密码臂:其反密码环中部的三个核苷酸组成三联体,在蛋白质生物 合成中,可以用来识别 mRNA 上相应的密码,故称为反密码(anticoden)。④ TψC 臂:含保守的 TψC 顺序, 可以识别核蛋白体上的 rRNA,促使 tRNA 与核蛋白体结合。⑤可变臂:位于 TψC 臂和反密码臂之间,功能不 详。 3.rRNA 的结构与功能:rRNA 是细胞中含量最多的 RNA,可与蛋白质一起构成核蛋白体,作为蛋白质生物合 成的场所。原核生物中的 rRNA 有三种:5S,16S,23S。真核生物中的 rRNA 有四种:5S,5.8S,18S,28S。 八、核酶: 具有自身催化作用的 RNA 称为核酶(ribozyme),核酶通常具有特殊的分子结构,如锤头结构。 九、核酸的一般理化性质: 核酸具有酸性;粘度大;能吸收紫外光,最大吸收峰为 260nm。 十、DNA 的变性: 在理化因素作用下,DNA 双螺旋的两条互补链松散而分开成为单链,从而导致 DNA 的理化性质及生物学性 质发生改变,这种现象称为 DNA 的变性。 引起 DNA 变性的因素主要有:①高温,②强酸强碱,③有机溶剂等。DNA 变性后的性质改变:①增色效应: 指 DNA 变性后对 260nm 紫外光的光吸收度增加的现象;②旋光性下降;③粘度降低;④生物功能丧失或改变。 加热 DNA 溶液,使其对 260nm 紫外光的吸收度突然增加,达到其最大值一半时的温度,就是 DNA 的变 性温度(融解温度,Tm)。Tm 的高低与 DNA 分子中 G+C 的含量有关,G+C 的含量越高,则 Tm 越高。 十一、DNA 的复性与分子杂交: 将变性 DNA 经退火处理,使其重新形成双螺旋结构的过程,称为 DNA 的复性。 两条来源不同的单链核酸(DNA 或 RNA),只要它们有大致相同的互补碱基顺序,以退火处理即可复性
形成新的杂种双螺旋,这一现象称为核酸的分子杂交。核酸杂交可以是 DNA-DNA,也可以是DNA-RNA杂交 不同来源的,具有大致相同互补碱基顺序的核酸片段称为同源顺序。 常用的核酸分子杂交技术有:原位杂交、斑点杂交、 Southern杂交及 Northern杂交 在核酸杂交分析过程中,常将已知顺序的核酸片段用放射性同位素或生物素进行标记,这种带有一定标记 的己知顺序的核酸片段称为探针 十二、核酸酶 凡是能水解核酸的酶都称为核酸酶。凡能从多核苷酸链的末端开始水解核酸的酶称为核酸外切酶,凡能从多核 苷酸链中间开始水解核酸的酶称为核酸内切酶。能识别特定的核苷酸顺序,并从特定位点水解核酸的内切酶称为 限制性核酸内切酶(限制酶) 第四章藤 酶的概念 酶( enzyme)是由活细胞产生的生物催化剂,这种催化剂具有极高的催化效率和高度的底物特异性,其化学本 质是蛋白质。酶按照其分子结构可分为单体酶、寡聚酶和多酶体系(多酶复合体和多功能酶)三大类 、酶的分子组成: 酶分子可根据其化学组成的不同,可分为单纯酶和结合酶(全酶)两类。结合酶则是由酶蛋白和辅助因子 部分构成,酶蛋白部分主要与酶的底物特异性有关,辅助因子则与酶的催化活性有关 与酶蛋白疏松结合并与酶的催化活性有关的耐热低分子有机化合物称为辅酶。与酶蛋白牢固结合并与酶的催 化活性有关的耐热低分子有机化合物称为辅基 三、辅酶与辅基的来源及其生理功用 辅酶与辅基的生理功用主要是:(1)运载氢原子或电子,参与氧化还原反应。(2)运载反应基团,如酰基、氨 基、烷基、羧基及一碳单位等,参与基团转移。大部分的辅酶与辅基衍生于维生素 维生素( vitam in)是指一类维持细胞正常功能所必需的,但在许多生物体内不能自身合成而必须由食物供给 的小分子有机化合物 维生素可按其溶解性的不同分为脂溶性维生素和水溶性维生素两大类。脂溶性维生素有VitA、VtD、Vit 和vtK四种:水溶性维生素有VtB1,VtB2, VitPP,VitB6,VtB12,VtC,泛酸,生物素,叶酸等。 1.TPP:即焦磷酸硫胺素,由硫胺素(tB1)焦磷酸化而生成,是脱羧酶的辅酶,在体内参与糖代谢过程中α 酮酸的氧化脱羧反应。 2.FMN和FAD:即黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD),是核黄素(VitB2)的衍生物。FMN 或FAD通常作为脱氢酶的辅基,在酶促反应中作为递氢体(双递氢体)。 3.NAD+和NADP+:即尼克酰胺腺嘌呤二核苷酸(NAD+,辅酶1)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+, 辅酶Ⅱ1),是VtPP的衍生物。NAD+和NADP+主要作为脱氢酶的辅酶,在酶促反应中起递氢体的作用,为单 递氢体。 4.磷酸吡哆醛和磷酸吡哆胺:是νtB6的衍生物。磷酸吡哆醛和磷酸吡哆胺可作为氨基转移酶,氨基酸脱羧酶 半胱氨酸脱硫酶等的辅酶 5.CoA:泛酸(遍多酸)在体内参与构成辅酶A(CoA)。CoA中的巯基可与羧基以高能硫酯键结合,在糖、脂 蛋白质代谢中起传递酰基的作用,是酰化酶的辅酶。 6.生物素:是羧化酶的辅基,在体内参与CO2的固定和羧化反应。 7.FH4:由叶酸衍生而来。四氢叶酸是体内一碳单位基团转移酶系统中的辅酶 8.VtB12衍生物:VtB12分子中含金属元素钴,故又称为钴胺素。VtB12在体内有多种活性形式,如5- 脱氧腺苷钻胺素、甲基钻胺素等。其中,5′-脱氧腺苷钻胺素参与构成变位酶的辅酶,甲基钻胺素则是甲基转移
5 形成新的杂种双螺旋,这一现象称为核酸的分子杂交。核酸杂交可以是 DNA-DNA,也可以是 DNA-RNA 杂交。 不同来源的,具有大致相同互补碱基顺序的核酸片段称为同源顺序。 常用的核酸分子杂交技术有:原位杂交、斑点杂交、Southern 杂交及 Northern 杂交等。 在核酸杂交分析过程中,常将已知顺序的核酸片段用放射性同位素或生物素进行标记,这种带有一定标记 的已知顺序的核酸片段称为探针。 十二、核酸酶: 凡是能水解核酸的酶都称为核酸酶。凡能从多核苷酸链的末端开始水解核酸的酶称为核酸外切酶,凡能从多核 苷酸链中间开始水解核酸的酶称为核酸内切酶。能识别特定的核苷酸顺序,并从特定位点水解核酸的内切酶称为 限制性核酸内切酶(限制酶) 第四章 酶 一、酶的概念: 酶(enzyme)是由活细胞产生的生物催化剂,这种催化剂具有极高的催化效率和高度的底物特异性,其化学本 质是蛋白质。酶按照其分子结构可分为单体酶、寡聚酶和多酶体系(多酶复合体和多功能酶)三大类。 二、酶的分子组成: 酶分子可根据其化学组成的不同,可分为单纯酶和结合酶(全酶)两类。结合酶则是由酶蛋白和辅助因子两 部分构成,酶蛋白部分主要与酶的底物特异性有关,辅助因子则与酶的催化活性有关。 与酶蛋白疏松结合并与酶的催化活性有关的耐热低分子有机化合物称为辅酶。与酶蛋白牢固结合并与酶的催 化活性有关的耐热低分子有机化合物称为辅基。 三、辅酶与辅基的来源及其生理功用: 辅酶与辅基的生理功用主要是:⑴ 运载氢原子或电子,参与氧化还原反应。⑵ 运载反应基团,如酰基、氨 基、烷基、羧基及一碳单位等,参与基团转移。大部分的辅酶与辅基衍生于维生素。 维生素(vitamin)是指一类维持细胞正常功能所必需的,但在许多生物体内不能自身合成而必须由食物供给 的小分子有机化合物。 维生素可按其溶解性的不同分为脂溶性维生素和水溶性维生素两大类。脂溶性维生素有 VitA、VitD、VitE 和 VitK 四种;水溶性维生素有 VitB1,VitB2,VitPP,VitB6,VitB12,VitC,泛酸,生物素,叶酸等。 1.TPP:即焦磷酸硫胺素,由硫胺素(Vit B1)焦磷酸化而生成,是脱羧酶的辅酶,在体内参与糖代谢过程中 α- 酮酸的氧化脱羧反应。 2.FMN 和 FAD:即黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD),是核黄素(VitB2)的衍生物。FMN 或 FAD 通常作为脱氢酶的辅基,在酶促反应中作为递氢体(双递氢体)。 3.NAD+和 NADP+:即尼克酰胺腺嘌呤二核苷酸(NAD+,辅酶Ⅰ)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+, 辅酶Ⅱ),是 Vit PP 的衍生物。NAD+和 NADP+主要作为脱氢酶的辅酶,在酶促反应中起递氢体的作用,为单 递氢体。 4.磷酸吡哆醛和磷酸吡哆胺:是 Vit B6 的衍生物。磷酸吡哆醛和磷酸吡哆胺可作为氨基转移酶,氨基酸脱羧酶, 半胱氨酸脱硫酶等的辅酶。 5.CoA:泛酸(遍多酸)在体内参与构成辅酶 A(CoA)。CoA 中的巯基可与羧基以高能硫酯键结合,在糖、脂、 蛋白质代谢中起传递酰基的作用,是酰化酶的辅酶。 6.生物素:是羧化酶的辅基,在体内参与 CO2 的固定和羧化反应。 7. FH4:由叶酸衍生而来。四氢叶酸是体内一碳单位基团转移酶系统中的辅酶。 8. Vit B12 衍生物:Vit B12 分子中含金属元素钴,故又称为钴胺素。Vit B12 在体内有多种活性形式,如 5'- 脱氧腺苷钴胺素、甲基钴胺素等。其中,5'-脱氧腺苷钴胺素参与构成变位酶的辅酶,甲基钴胺素则是甲基转移
酶的辅酶 四、金属离子的作用 1.稳定构象:稳定酶蛋白催化活性所必需的分子构象: 2.构成酶的活性中心:作为酶的活性中心的组成成分,参与构成酶的活性中心 3.连接作用:作为桥梁,将底物分子与酶蛋白螯合起来。 五、酶的活性中心: 酶分子上具有一定空间构象的部位,该部位化学基团集中,直接参与将底物转变为产物的反应过程,这一部 位就称为酶的活性中心。 参与构成酶的活性中心的化学基团,有些是与底物相结合的,称为结合基团,有些是催化底物反应转变成产 物的,称为催化基团,这两类基团统称为活性中心内必需基团。在酶的活性中心以外,也存在一些化学基团,主 要与维系酶的空间构象有关,称为酶活性中心外必需基团。 六、酶促反应的特点 1.具有极高的催化效率:酶的催化效率可比一般催化剂高106~1020倍。酶能与底物形成ES中间复合物 从而改变化学反应的进程,使反应所需活化能阙大大降低,活化分子的数目大大增加,从而加速反应进行 2.具有高度的底物特异性:一种酶只作用于一种或一类化合物,以促进一定的化学变化,生成一定的产物,这 种现象称为酶作用的特异性。 (1)绝对特异性:一种酶只能作用于一种化合物,以催化一种化学反应,称为绝对特异性,如琥珀酸脱氢酶 (2)相对特异性:一种酶只能作用于一类化合物或一种化学键,催化一类化学反应,称为相对特异性,如脂肪酶 (3)立体异构特异性:一种酶只能作用于一种立体异构体,或只能生成一种立体异构体,称为立体异构特异性, 如L-精氨酸酶 3.酶的催化活性是可以调节的:如代谢物可调节酶的催化活性,对酶分子的共价修饰可改变酶的催化活性,也 可通过改变酶蛋白的合成来改变其催化活性 七、酶促反应的机制 1.中间复合物学说与诱导契合学说:酶催化时,酶活性中心首先与底物结合生成一种酶底物复合物(ES),此 复合物再分解释放出酶,并生成产物,即为中间复合物学说。当底物与酶接近时,底物分子可以诱导酶活性中心 的构象以生改变,使之成为能与底物分子密切结合的构象,这就是诱导契合学说 2.与酶的高效率催化有关的因素:①趋近效应与定向作用:②张力作用:③酸碱催化作用:④共价催化作用 ⑤酶活性中心的低介电区(表面效应)。 八、酶促反应动力学 酶反应动力学主要研究酶催化的反应速度以及影响反应速度的各种因素。在探讨各种因素对酶促反应速度的 影响时,通常测定其初始速度来代表酶促反应速度,即底物转化量<5%时的反应速度 1.底物浓度对反应速度的影响: (1)底物对酶促反应的饱和现象:由实验观察到,在酶浓度不变时,不同的底物浓度与反应速度的关系为一矩形双 曲线,即当底物浓度较低时,反应速度的增加与底物浓度的增加成正比(一级反应)此后,随底物浓度的增加, 反应速度的增加量逐渐减少(混合级反应):最后,当底物浓度增加到一定量时,反应速度达到一最大值,不再 随底物浓度的增加而增加(零级反应)。 (2)米氏方程及米氏常数:根据上述实验结果, Michaelis& Menten于1913年推导出了上述矩形双曲线的数学 表达式,即米氏方程:V=Vmax[s/(Km+[S])。其中,Wmax为最大反应速度,Km为米氏常数。 3Km和max的意义 6
6 酶的辅酶。 四、金属离子的作用: 1. 稳定构象:稳定酶蛋白催化活性所必需的分子构象; 2. 构成酶的活性中心:作为酶的活性中心的组成成分,参与构成酶的活性中心; 3. 连接作用:作为桥梁,将底物分子与酶蛋白螯合起来。 五、酶的活性中心: 酶分子上具有一定空间构象的部位,该部位化学基团集中,直接参与将底物转变为产物的反应过程,这一部 位就称为酶的活性中心。 参与构成酶的活性中心的化学基团,有些是与底物相结合的,称为结合基团,有些是催化底物反应转变成产 物的,称为催化基团,这两类基团统称为活性中心内必需基团。在酶的活性中心以外,也存在一些化学基团,主 要与维系酶的空间构象有关,称为酶活性中心外必需基团。 六、酶促反应的特点: 1.具有极高的催化效率:酶的催化效率可比一般催化剂高 106~1020 倍。酶能与底物形成 ES 中间复合物, 从而改变化学反应的进程,使反应所需活化能阈大大降低,活化分子的数目大大增加,从而加速反应进行。 2.具有高度的底物特异性:一种酶只作用于一种或一类化合物,以促进一定的化学变化,生成一定的产物,这 种现象称为酶作用的特异性。 ⑴绝对特异性:一种酶只能作用于一种化合物,以催化一种化学反应,称为绝对特异性,如琥珀酸脱氢酶。 ⑵相对特异性:一种酶只能作用于一类化合物或一种化学键,催化一类化学反应,称为相对特异性,如脂肪酶。 ⑶立体异构特异性:一种酶只能作用于一种立体异构体,或只能生成一种立体异构体,称为立体异构特异性, 如 L-精氨酸酶。 3.酶的催化活性是可以调节的:如代谢物可调节酶的催化活性,对酶分子的共价修饰可改变酶的催化活性,也 可通过改变酶蛋白的合成来改变其催化活性。 七、酶促反应的机制: 1.中间复合物学说与诱导契合学说:酶催化时,酶活性中心首先与底物结合生成一种酶-底物复合物(ES),此 复合物再分解释放出酶,并生成产物,即为中间复合物学说。当底物与酶接近时,底物分子可以诱导酶活性中心 的构象以生改变,使之成为能与底物分子密切结合的构象,这就是诱导契合学说。 2.与酶的高效率催化有关的因素:①趋近效应与定向作用;②张力作用;③酸碱催化作用;④共价催化作用; ⑤酶活性中心的低介电区(表面效应)。 八、酶促反应动力学: 酶反应动力学主要研究酶催化的反应速度以及影响反应速度的各种因素。在探讨各种因素对酶促反应速度的 影响时,通常测定其初始速度来代表酶促反应速度,即底物转化量<5%时的反应速度。 1.底物浓度对反应速度的影响: ⑴底物对酶促反应的饱和现象:由实验观察到,在酶浓度不变时,不同的底物浓度与反应速度的关系为一矩形双 曲线,即当底物浓度较低时,反应速度的增加与底物浓度的增加成正比(一级反应);此后,随底物浓度的增加, 反应速度的增加量逐渐减少(混合级反应);最后,当底物浓度增加到一定量时,反应速度达到一最大值,不再 随底物浓度的增加而增加(零级反应)。 ⑵米氏方程及米氏常数:根据上述实验结果,Michaelis & Menten 于 1913 年推导出了上述矩形双曲线的数学 表达式,即米氏方程: ν= Vmax[S]/(Km+[S])。其中,Vmax 为最大反应速度,Km 为米氏常数。 ⑶Km 和 Vmax 的意义:
①当v=max/2时,Km=[S]。因此,Km等于酶促反应速度达最大值一半时的底物浓度。 ②当k1>>k+2时,Km=k-1/k+1=Ks。因此,Km可以反映酶与底物亲和力的大小,即Km值越小,则 酶与底物的亲和力越大:反之,则越小 ③Km可用于判断反应级数:当[S]100Km时,v=Wmax,反应为零级反应,即反应速度与底物浓度无关:当 0.01Km<[S]<100Km时,反应处于零级反应和一级反应之间,为混合级反应 ④Km是酶的特征性常数:在一定条件下,某种酶的Km值是恒定的,因而可以通过测定不同酶(特别是一 组同工酶)的Km值,来判断是否为不同的酶 ⑤Km可用来判断酶的最适底物:当酶有几种不同的底物存在时,Km值最小者,为该酶的最适底物 ⑥Km可用来确定酶活性测定时所需的底物浓度:当[S]=10Km时,v=91%max,为最合适的测定酶活 性所需的底物浓度 ⑦Wmax可用于酶的转换数的计算:当酶的总浓度和最大速度已知时,可计算出酶的转换数,即单位时间内 每个酶分子催化底物转变为产物的分子数 4Km和vmax的测定:主要采用 Line weaver-Burk双倒数作图法和 Hanes作图法 2.酶浓度对反应速度的影响:当反应系统中底物的浓度足够大时,酶促反应速度与酶浓度成正比,即v=k[E] 3.温度对反应速度的影响:一般来说,酶促反应速度随温度的增高而加快,但当温度增加达到某一点后,由于 酶蛋白的热变性作用,反应速度迅速下降。酶促反应速度随温度升高而达到一最大值时的温度就称为酶的最适温 度。酶的最适温度与实验条件有关,因而它不是酶的特征性常数。低温时由于活化分子数目减少,反应速度降低, 但温度升高后,酶活性又可恢复。 4.pH对反应速度的影响:观察pH对酶促反应速度的影响,通常为一钟形曲线,即pH过高或过低均可导致酶 催化活性的下降。酶催化活性最高时溶液的pH值就称为酶的最适pH。人体内大多数酶的最适pH在65~8.0 之间。酶的最适pH不是酶的特征性常数 5.抑制剂对反应速度的影响 凡是能降低酶促反应速度,但不引起酶分子变性失活的物质统称为酶的抑制剂。按照抑制剂的抑制作用, 可将其分为不可逆抑制作用和可逆抑制作用两大类 1)不可逆抑制作用 抑制剂与酶分子的必需基团共价结合引起酶活性的抑制,且不能采用透析等简单方法使酶活性恢复的抑制 作用就是不可逆抑制作用。如果以V~[E]作图,就可得到一组斜率相同的平行线,随抑制剂浓度的增加而平行 向右移动。酶的不可逆抑制作用包括专一性抑制(如有机磷农药对胆碱酯酶的抑制)和非专一性抑制(如路易斯 气对巯基酶的抑制)两种 (2可逆抑制作用: 抑制剂以非共价键与酶分子可逆性结合造成酶活性的抑制,且可采用透析等简单方法去除抑制剂而使酶活性 完全恢复的抑制作用就是可逆抑制作用。如果以ⅴ~[E]作图,可得到一组随抑制剂浓度增加而斜率降低的直线 逆抑制作用包括竞争性、反竞争性和非竞争性抑制几种类型 ①竞争性抑制:抑制剂与底物竞争与酶的同一活性中心结合,从而干扰了酶与底物的结合,使酶的催化活性 降低,这种作用就称为竞争性抑制作用。其特点为:a竞争性抑制剂往往是酶的底物类似物或反应产物:b抑制 剂与酶的结合部位与底物与酶的结合部位相同:c.抑制剂浓度越大,则抑制作用越大:但增加底物浓度可使抑制 程度减小:d动力学参数:Km值增大,Ⅷm值不变。典型的例子是丙二酸对琥珀酸脱氢酶(底物为琥珀酸)的 竞争性抑制和磺胺类药物(对氨基苯磺酰胺)对二氢叶酸合成酶(底物为对氨基苯甲酸)的竞争性抑制。 ②反竞争性抑制:抑制剂不能与游离酶结合,但可与ES复合物结合并阻止产物生成,使酶的催化活性降低, 称酶的反竞争性抑制。其特点为:a抑制剂与底物可同时与酶的不同部位结合:b必须有底物存在,抑制剂才能 对酶产生抑制作用:c.动力学参数:Km减小,Vm降低 ③非竞争性抑制:抑制剂既可以与游离酶结合,也可以与ES复合物结合,使酶的催化活性降低,称为非竞争 性抑制。其特点为:a底物和抑制剂分别独立地与酶的不同部位相结合:b抑制剂对酶与底物的结合无影响,故
7 ①当 ν=Vmax/2 时,Km=[S]。因此,Km 等于酶促反应速度达最大值一半时的底物浓度。 ②当 k-1>>k+2 时,Km=k-1/k+1=Ks。因此,Km 可以反映酶与底物亲和力的大小,即 Km 值越小,则 酶与底物的亲和力越大;反之,则越小。 ③Km 可用于判断反应级数:当[S]100Km 时,ν=Vmax,反应 为零 级反应 ,即 反应速 度与 底物浓 度无 关;当 0.01Km<[S]<100Km 时,反应处于零级反应和一级反应之间,为混合级反应。 ④Km 是酶的特征性常数:在一定条件下,某种酶的 Km 值是恒定的,因而可以通过测定不同酶(特别是一 组同工酶)的 Km 值,来判断是否为不同的酶。 ⑤Km 可用来判断酶的最适底物:当酶有几种不同的底物存在时,Km 值最小者,为该酶的最适底物。 ⑥Km 可用来确定酶活性测定时所需的底物浓度:当[S]=10Km 时,ν=91%Vmax,为最合适的测定酶活 性所需的底物浓度。 ⑦Vmax 可用于酶的转换数的计算:当酶的总浓度和最大速度已知时,可计算出酶的转换数,即单位时间内 每个酶分子催化底物转变为产物的分子数。 ⑷Km 和 Vmax 的测定:主要采用 Lineweaver-Burk 双倒数作图法和 Hanes 作图法。 2.酶浓度对反应速度的影响:当反应系统中底物的浓度足够大时,酶促反应速度与酶浓度成正比,即 ν=k[E]。 3.温度对反应速度的影响:一般来说,酶促反应速度随温度的增高而加快,但当温度增加达到某一点后,由于 酶蛋白的热变性作用,反应速度迅速下降。酶促反应速度随温度升高而达到一最大值时的温度就称为酶的最适温 度。酶的最适温度与实验条件有关,因而它不是酶的特征性常数。低温时由于活化分子数目减少,反应速度降低, 但温度升高后,酶活性又可恢复。 4.pH 对反应速度的影响:观察 pH 对酶促反应速度的影响,通常为一钟形曲线,即 pH 过高或过低均可导致酶 催化活性的下降。酶催化活性最高时溶液的 pH 值就称为酶的最适 pH。人体内大多数酶的最适 pH 在 6.5~8.0 之间。酶的最适 pH 不是酶的特征性常数。 5.抑制剂对反应速度的影响: 凡是能降低酶促反应速度,但不引起酶分子变性失活的物质统称为酶的抑制剂。按照抑制剂的抑制作用, 可将其分为不可逆抑制作用和可逆抑制作用两大类。 ⑴不可逆抑制作用: 抑制剂与酶分子的必需基团共价结合引起酶活性的抑制,且不能采用透析等简单方法使酶活性恢复的抑制 作用就是不可逆抑制作用。如果以 ν~[E ]作图,就可得到一组斜率相同的平行线,随抑制剂浓度的增加而平行 向右移动。酶的不可逆抑制作用包括专一性抑制(如有机磷农药对胆碱酯酶的抑制)和非专一性抑制(如路易斯 气对巯基酶的抑制)两种。 ⑵可逆抑制作用: 抑制剂以非共价键与酶分子可逆性结合造成酶活性的抑制,且可采用透析等简单方法去除抑制剂而使酶活性 完全恢复的抑制作用就是可逆抑制作用。如果以 ν~[E]作图,可得到一组随抑制剂浓度增加而斜率降低的直线。 可逆抑制作用包括竞争性、反竞争性和非竞争性抑制几种类型。 ① 竞争性抑制:抑制剂与底物竞争与酶的同一活性中心结合,从而干扰了酶与底物的结合,使酶的催化活性 降低,这种作用就称为竞争性抑制作用。其特点为:a.竞争性抑制剂往往是酶的底物类似物或反应产物;b.抑制 剂与酶的结合部位与底物与酶的结合部位相同;c.抑制剂浓度越大,则抑制作用越大;但增加底物浓度可使抑制 程度减小;d.动力学参数:Km 值增大,Vm 值不变。典型的例子是丙二酸对琥珀酸脱氢酶(底物为琥珀酸)的 竞争性抑制和磺胺类药物(对氨基苯磺酰胺)对二氢叶酸合成酶(底物为对氨基苯甲酸)的竞争性抑制。 ② 反竞争性抑制:抑制剂不能与游离酶结合,但可与 ES 复合物结合并阻止产物生成,使酶的催化活性降低, 称酶的反竞争性抑制。其特点为:a.抑制剂与底物可同时与酶的不同部位结合;b.必须有底物存在,抑制剂才能 对酶产生抑制作用;c.动力学参数:Km 减小,Vm 降低。 ③ 非竞争性抑制:抑制剂既可以与游离酶结合,也可以与 ES 复合物结合,使酶的催化活性降低,称为非竞争 性抑制。其特点为:a.底物和抑制剂分别独立地与酶的不同部位相结合;b.抑制剂对酶与底物的结合无影响,故
底物浓度的改变对抑制程度无影响;C.动力学参数:Km值不变,Vm值降低 6.激活剂对反应速度的影响:能够促使酶促反应速度加快的物质称为酶的激活剂。酶的激活剂大多数是金属离 子,如K+、Mq2+、Mn2+等,唾液淀粉酶的激活剂为C|-。 九、酶的调节 可以通过改变其催化活性而使整个代谢反应的速度或方向发生改变的酶就称为限速酶或关键酶 酶活性的调节可以通过改变其结构而使其催化活性以生改变,也可以通过改变其含量来改变其催化活性,还 可以通过以不同形式的酶在不同组织中的分布差异来调节代谢活动 1.酶结构的调节:通过对现有酶分子结构的影响来改变酶的催化活性。这是一种快速调节方式 (1)变构调节:又称别构调节。某些代谢物能与变构酶分子上的变构部位特异性结合,使酶的分子构发生改变 从而改变酶的催化活性以及代谢反应的速度,这种调节作用就称为变构调节。具有变构调节作用的酶就称为变构 酶。凡能使酶分子变构并使酶的催化活性发生改变的代谢物就称为变构剂。当变构酶的一个亚基与其配体(底物 或变构剂)结合后,能够通过改变相邻亚基的构象而使其对配体的亲和力发生改变,这种效应就称为变构酶的协 同效应。变构剂一般以反馈方式对代谢途径的起始关键酶进行调节,常见的为负反馈调节。变构调节的特点:① 酶活性的改变通过酶分子构象的改变而实现:②酶的变构仅涉及非共价键的变化:③调节酶活性的因素为代谢物 ④为一非耗能过程:⑤无放大效应 (2)共价修饰调节:酶蛋白分子中的某些基团可以在其他酶的催化下发生共价修饰,从而导致酶活性的改变,称 为共价修饰调节。共价修饰方式有:磷酸化-脱磷酸化等。共价修饰调节一般与激素的调节相联系,其调节方式 为级联反应。共价修饰调节的特点为:①酶以两种不同修饰和不同活性的形式存在:②有共价键的变化:③受其 他调节因素(如激素)的影响:④一般为耗能过程:⑤存在放大效应 (3酶原的激活:处于无活性状态的酶的前身物质就称为酶原。酶原在一定条件下转化为有活性的酶的过程称为 酶原的激活。酶原的激活过程通常伴有酶蛋白一级结构的改变。酶原分子一级结构的改变导致了酶原分子空间结 构的改变,使催化活性中心得以形成,故使其从无活性的酶原形式转变为有活性的酶。酶原激活的生理意义在于 保护自身组织细胞不被酶水解消化 2.酶含量的调节:是指通过改变细胞中酶蛋白合成或降解的速度来调节酶分子的绝对含量,影响其催化活性 从而调节代谢反应的速度。这是机体内迟缓调节的重要方式 1酶蛋白合成的调节:酶蛋白的合成速度通常通过一些诱导剂或阻遏剂来进行调节。凡能促使基因转录增强, 从而使酶蛋白合成增加的物质就称为诱导剂:反之,则称为阻遏剂。常见的诱导剂或阻遏剂包括代谢物、药物和 激素等 12酶蛋白降解的调节:如饥饿时,精氨酸酶降解减慢,故酶活性増高,有利于氨基酸的分解供能 3.同工酶的调节:在同一种属中,催化活性相同而酶蛋白的分子结构,理化性质及免疫学性质不同的一组酶称 为同工酶。同工酶在体内的生理意义主要在于适应不同组织或不同细胞器在代谢上的不同需要。因此,同工酶在 体内的生理功能是不同的 乳酸脱氢酶同工酶(LDHs)为四聚体,在体内共有五种分子形式,即LDH1(H4),LDH2(H3M1),LDH3 (H2M2),LDH4(H1M3)和LDH5(M4)。心肌中以LDH1含量最多,LDH1对乳酸的亲和力较高,因此它 的主要作用是催化乳酸转变为丙酮酸再进一步氧化分解,以供应心肌的能量。在骨骼肌中含量最多的是LDH5, LDH5对丙酮酸的亲和力较高,因此它的主要作用是催化丙酮酸转变为乳酸,以促进糖酵解的进行 十、酶的命名与分类 1.酶的命名:主要有习惯命名法与系统命名法两种,但常用者为习惯命名法 2.酶的分类:根据1961年国际酶学委员会(IEC)的分类法,将酶分为六大类:①氧化还原酶类:催化氧化 还原反应:②转移酶类:催化一个基团从某种化合物至另一种化合物:③水解酶类:催化化合物的水解反应:④ 裂合酶类:催化从双键上去掉一个基团或加上一个基团至双键上:⑤异构酶类:催化分子内基团重排:⑥合成酶 类:催化两分子化合物的缔合反应
8 底物浓度的改变对抑制程度无影响;c.动力学参数:Km 值不变,Vm 值降低。 6.激活剂对反应速度的影响:能够促使酶促反应速度加快的物质称为酶的激活剂。酶的激活剂大多数是金属离 子,如 K+、Mg2+、Mn2+等,唾液淀粉酶的激活剂为 Cl-。 九、酶的调节: 可以通过改变其催化活性而使整个代谢反应的速度或方向发生改变的酶就称为限速酶或关键酶。 酶活性的调节可以通过改变其结构而使其催化活性以生改变,也可以通过改变其含量来改变其催化活性,还 可以通过以不同形式的酶在不同组织中的分布差异来调节代谢活动。 1.酶结构的调节:通过对现有酶分子结构的影响来改变酶的催化活性。这是一种快速调节方式。 ⑴变构调节:又称别构调节。某些代谢物能与变构酶分子上的变构部位特异性结合,使酶的分子构发生改变, 从而改变酶的催化活性以及代谢反应的速度,这种调节作用就称为变构调节。具有变构调节作用的酶就称为变构 酶。凡能使酶分子变构并使酶的催化活性发生改变的代谢物就称为变构剂。当变构酶的一个亚基与其配体(底物 或变构剂)结合后,能够通过改变相邻亚基的构象而使其对配体的亲和力发生改变,这种效应就称为变构酶的协 同效应。变构剂一般以反馈方式对代谢途径的起始关键酶进行调节,常见的为负反馈调节。变构调节的特点:① 酶活性的改变通过酶分子构象的改变而实现;②酶的变构仅涉及非共价键的变化;③调节酶活性的因素为代谢物; ④为一非耗能过程;⑤无放大效应。 ⑵共价修饰调节:酶蛋白分子中的某些基团可以在其他酶的催化下发生共价修饰,从而导致酶活性的改变,称 为共价修饰调节。共价修饰方式有:磷酸化-脱磷酸化等。共价修饰调节一般与激素的调节相联系,其调节方式 为级联反应。共价修饰调节的特点为:①酶以两种不同修饰和不同活性的形式存在;②有共价键的变化;③受其 他调节因素(如激素)的影响;④一般为耗能过程;⑤存在放大效应。 ⑶酶原的激活:处于无活性状态的酶的前身物质就称为酶原。酶原在一定条件下转化为有活性的酶的过程称为 酶原的激活。酶原的激活过程通常伴有酶蛋白一级结构的改变。酶原分子一级结构的改变导致了酶原分子空间结 构的改变,使催化活性中心得以形成,故使其从无活性的酶原形式转变为有活性的酶。酶原激活的生理意义在于: 保护自身组织细胞不被酶水解消化。 2.酶含量的调节:是指通过改变细胞中酶蛋白合成或降解的速度来调节酶分子的绝对含量,影响其催化活性, 从而调节代谢反应的速度。这是机体内迟缓调节的重要方式。 ⑴酶蛋白合成的调节:酶蛋白的合成速度通常通过一些诱导剂或阻遏剂来进行调节。凡能促使基因转录增强, 从而使酶蛋白合成增加的物质就称为诱导剂;反之,则称为阻遏剂。常见的诱导剂或阻遏剂包括代谢物、药物和 激素等。 ⑵酶蛋白降解的调节:如饥饿时,精氨酸酶降解减慢,故酶活性增高,有利于氨基酸的分解供能。 3.同工酶的调节:在同一种属中,催化活性相同而酶蛋白的分子结构,理化性质及免疫学性质不同的一组酶称 为同工酶。同工酶在体内的生理意义主要在于适应不同组织或不同细胞器在代谢上的不同需要。因此,同工酶在 体内的生理功能是不同的。 乳酸脱氢酶同工酶(LDHs)为四聚体,在体内共有五种分子形式,即 LDH1(H4),LDH2(H3M1),LDH3 (H2M2),LDH4(H1M3)和 LDH5(M4)。心肌中以 LDH1 含量最多,LDH1 对乳酸的亲和力较高,因此它 的主要作用是催化乳酸转变为丙酮酸再进一步氧化分解,以供应心肌的能量。在骨骼肌中含量最多的是 LDH5, LDH5 对丙酮酸的亲和力较高,因此它的主要作用是催化丙酮酸转变为乳酸,以促进糖酵解的进行。 十、酶的命名与分类: 1.酶的命名:主要有习惯命名法与系统命名法两种,但常用者为习惯命名法。 2.酶的分类:根据 1961 年国际酶学委员会(IEC)的分类法,将酶分为六大类:① 氧化还原酶类:催化氧化 还原反应;②转移酶类:催化一个基团从某种化合物至另一种化合物;③水解酶类:催化化合物的水解反应;④ 裂合酶类:催化从双键上去掉一个基团或加上一个基团至双键上;⑤异构酶类:催化分子内基团重排;⑥合成酶 类:催化两分子化合物的缔合反应。——————————
第五章糖代谢 糖类的生理功用 ①氧化供能:糖类是人体最主要的供能物质,占全部供能物质供能量的70%;与供能有关的糖类主要是葡萄糖 和糖原,前者为运输和供能形式,后者为贮存形式 ②作为结构成分:糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白,糖脂和糖蛋白均可参与构成生物膜、神经 组织等。 ③作为核酸类化合物的成分:核糖和脱氧核糖参与构成核苷酸,DNA,RNA等 ④转变为其他物质:糖类可经代谢而转变为脂肪或氨基酸等化合物 糖的无氧酵解 糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。其全部反应过程在胞液中进行,代谢 的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子ATP 糖的无氧酵解代谢过程可分为四个阶段 1.活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异枃反应生成1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄 糖→6-磷酸果糖→16-双磷酸果糖(F-1,6-BP)。这一阶段需消耗两分子ATP,己糖激酶(肝中为葡萄糖激酶) 和6-磷酸果糖激酶-1是关键酶 2.裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:F-1,6-BP→磷酸 羟丙酮十3-磷酸甘油醛和磷酸二羟丙酮→3-磷酸甘油醛。 3.放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3 磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。此阶段有两次底 物水平磷酸化的放能反应,共可生成2×2=4分子ATP。丙酮酸激酶为关键酶 4.还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+。即丙酮 酸→乳酸 糖无氧酵解的调节 主要是对三个关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸溦酶进行调节。己糖激酶的 变构抑制剂是G-6-P:肝中的葡萄糖激酶是调节肝细胞对葡萄糖吸收的主要因素,受长链脂酰CoA的反馈抑制 6-磷酸果糖激酶-1是调节糖酵解代谢途径流量的主要因素,受ATP和柠檬酸的变构抑制,AMP、ADP、1,6- 双磷酸果糖和2,6-双磷酸果糖的变构激活:丙酮酸激酶受1,δ-双磷酸果糖的变构嶶活,受ATP的变构抑制,肝 中还受到丙氨酸的变构抑制。 四、糖无氧酵解的生理意义: 1.在无氧和缺氧条件下,作为糖分解供能的补充途径:(1)骨骼肌在剧烈运动时的相对缺氧:(2)从平原进入高 原初期:(3)严重贫血、大量失血、呼吸障碍、肺及心血管疾患所致缺氧 2.在有氧条件下,作为某些组织细胞主要的供能途径:如表皮细胞,红细胞及视网膜等,由于无线粒体,故只 能通过无氧酵解供能。 五、糖的有氧氧化: 葡萄糖在有氧条件下彻底氧化分解生成C20和H2O,并释放出大量能量的过程称为糖的有氧氧化。绝大多数组 织细胞通过糖的有氧氧化途径获得能量。此代谢过程在细胞胞液和线粒体内进行,一分子葡萄糖彻底氧化分解可 产生36/38分子ATP。糖的有氧氧化代谢途径可分为三个阶段: 1.葡萄糖经酵解途径生成丙酮酸: 此阶段在细胞胞液中进行,与糖的无氧酵解途径相同,涉及的关键酶也相同。一分子葡萄糖分解后生成两分
9 第五章 糖代谢 一、糖类的生理功用: ① 氧化供能:糖类是人体最主要的供能物质,占全部供能物质供能量的 70%;与供能有关的糖类主要是葡萄糖 和糖原,前者为运输和供能形式,后者为贮存形式。 ② 作为结构成分:糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白,糖脂和糖蛋白均可参与构成生物膜、神经 组织等。 ③作为核酸类化合物的成分:核糖和脱氧核糖参与构成核苷酸,DNA,RNA 等。 ④转变为其他物质:糖类可经代谢而转变为脂肪或氨基酸等化合物。 二、糖的无氧酵解: 糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。其全部反应过程在胞液中进行,代谢 的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子 ATP。 糖的无氧酵解代谢过程可分为四个阶段: 1. 活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成 1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄 糖→6-磷酸果糖→1,6-双磷酸果糖(F-1,6-BP)。这一阶段需消耗两分子 ATP,己糖激酶(肝中为葡萄糖激酶) 和 6-磷酸果糖激酶-1 是关键酶。 2. 裂解(磷酸丙糖的生成):一分子 F-1,6-BP 裂解为两分子 3-磷酸甘油醛,包括两步反应:F-1,6-BP→磷酸 二羟丙酮 + 3-磷酸甘油醛 和磷酸二羟丙酮→3-磷酸甘油醛。 3. 放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3- 磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。此阶段有两次底 物水平磷酸化的放能反应,共可生成 2×2=4 分子 ATP。丙酮酸激酶为关键酶。 4.还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的 NADH,使 NADH 重新氧化为 NAD+。即丙酮 酸→乳酸。 三、糖无氧酵解的调节: 主要是对三个关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。己糖激酶的 变构抑制剂是 G-6-P;肝中的葡萄糖激酶是调节肝细胞对葡萄糖吸收的主要因素,受长链脂酰 CoA 的反馈抑制; 6-磷酸果糖激酶-1 是调节糖酵解代谢途径流量的主要因素,受 ATP 和柠檬酸的变构抑制,AMP、ADP、1,6- 双磷酸果糖和 2,6-双磷酸果糖的变构激活;丙酮酸激酶受 1,6-双磷酸果糖的变构激活,受 ATP 的变构抑制,肝 中还受到丙氨酸的变构抑制。 四、糖无氧酵解的生理意义: 1. 在无氧和缺氧条件下,作为糖分解供能的补充途径:⑴ 骨骼肌在剧烈运动时的相对缺氧;⑵ 从平原进入高 原初期;⑶ 严重贫血、大量失血、呼吸障碍、肺及心血管疾患所致缺氧。 2. 在有氧条件下,作为某些组织细胞主要的供能途径:如表皮细胞,红细胞及视网膜等,由于无线粒体,故只 能通过无氧酵解供能。 五、糖的有氧氧化: 葡萄糖在有氧条件下彻底氧化分解生成 C2O 和 H2O,并释放出大量能量的过程称为糖的有氧氧化。绝大多数组 织细胞通过糖的有氧氧化途径获得能量。此代谢过程在细胞胞液和线粒体内进行,一分子葡萄糖彻底氧化分解可 产生 36/38 分子 ATP。糖的有氧氧化代谢途径可分为三个阶段: 1.葡萄糖经酵解途径生成丙酮酸: 此阶段在细胞胞液中进行,与糖的无氧酵解途径相同,涉及的关键酶也相同。一分子葡萄糖分解后生成两分
子丙酮酸,两分子(NADH+H+)并净生成2分子ATP。NADH在有氧条件下可进入线粒体产能,共可得到2×2 或2×3分子ATP。故第一阶段可净生成6/8分子ATP。 2.丙酮酸氧化脱羧生成乙酰CoA 丙酮酸进入线粒体,在丙酮酸脱氢酶系的催化下氧化脱羧生成(NADH+H+)和乙酰CoA。此阶段可由两 分子(NADH+H+) 产生2×3分子ATP。丙酮酸脱氢酶系为关键酶,该酶由三种酶单体构成,涉及六种辅助因子,即NAD+ FAD、COA、TPP、硫辛酸和№g2+。 3.经三羧酸循环彻底氧化分解: 生成的乙酰CoA可进入三羧酸循环彻底氧化分解为CO2和H2O,并释放能量合成ATP。一分子乙酰CoA氧 化分解后共可生成12分子ATP,故此阶段可生成2×12=24分子ATP 三羧酸循环是指在线粒体中,乙酰CoA首先与草酰乙酸缩合生成柠檬酸,然后经过一系列的代谢反应,乙酰基 被氧化分解,而草酰乙酸再生的循环反应过程。这一循环反应过程又称为柠檬酸循环或 Krebs循环 三羧酸循环由八步反应构成:草酰乙酸十乙酰CoA→柠檬酸→异柠檬酸→α-酮戊二酸→琥珀酰CoA→琥珀酸 →延胡索酸→苹果酸→草酰乙酸。 三羧酸循环的特点 ①循环反应在线粒体中进行,为不可逆反应 ②每完成一次循环,氧化分解掉一分子乙酰基,可生成12分子ATP。 ③循环的中间产物既不能通过此循环反应生成,也不被此循环反应所消耗 ④循环中有两次脱羧反应,生成两分子CO2。 ⑤循环中有四次脱氢反应,生成三分子NADH和一分子FADH2。 ⑥循环中有一次直接产能反应,生成一分子GTP ⑦三羧酸循环的关键酶是柠檬酸合酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶系,且α-酮戊二酸脱氢酶系的结构 与丙酮酸脱氢酶系相似,辅助因子完全相同 六、糖有氧氧化的生理意义 1.是糖在体内分解供能的主要途径:(1)生成的ATP数目远远多于糖的无氧酵解生成的ATP数目:(2)机体内 大多数组织细胞均通过此途径氧化供能。 2.是糖、脂、蛋白质氧化供能的共同途径:糖、脂、蛋白质的分解产物主要经此途径彻底氧化分解供能。 3.是糖、脂、蛋白质相互转变的枢纽:有氧氧化途径中的中间代谢物可以由糖、脂、蛋白质分解产生,某些中 间代谢物也可以由此途径逆行而相互转变 七、有氧氧化的调节和巴斯德效应 丙酮酸脱氢酶系受乙酰CoA、ATP和NADH的变构抑制,受AMP、ADP和NAD+的变构激活。异柠檬酸脱氢 酶是调节三羧酸循环流量的主要因素,ATP是其变构抑制剂,AMP和ADP是其变构激活剂 巴斯德效应:糖的有氧氧化可以抑制糖的无氧酵解的现象。有氧时,由于酵解产生的NADH和丙酮酸进入线粒 体而产能,故糖的无氧酵解受抑制 八、磷酸戊糖途径
10 子丙酮酸,两分子(NADH+H+)并净生成 2 分子 ATP。NADH 在有氧条件下可进入线粒体产能,共可得到 2×2 或 2×3 分子 ATP。故第一阶段可净生成 6/8 分子 ATP。 2.丙酮酸氧化脱羧生成乙酰 CoA: 丙酮酸进入线粒体,在丙酮酸脱氢酶系的催化下氧化脱羧生成(NADH+H+)和乙酰 CoA。此阶段可由两 分子(NADH+H+) 产生 2×3 分子 ATP 。丙酮酸脱氢酶系为关键酶,该酶由三种酶单体构成,涉及六种辅助因子,即 NAD+、 FAD、CoA、TPP、硫辛酸和 Mg2+。 3.经三羧酸循环彻底氧化分解: 生成的乙酰 CoA 可进入三羧酸循环彻底氧化分解为 CO2 和 H2O,并释放能量合成 ATP。一分子乙酰 CoA 氧 化分解后共可生成 12 分子 ATP,故此阶段可生成 2×12=24 分子 ATP。 三羧酸循环是指在线粒体中,乙酰 CoA 首先与草酰乙酸缩合生成柠檬酸,然后经过一系列的代谢反应,乙酰基 被氧化分解,而草酰乙酸再生的循环反应过程。这一循环反应过程又称为柠檬酸循环或 Krebs 循环。 三羧酸循环由八步反应构成:草酰乙酸 + 乙酰 CoA→柠檬酸→异柠檬酸→α-酮戊二酸→琥珀酰 CoA→琥珀酸 →延胡索酸→苹果酸→草酰乙酸。 三羧酸循环的特点: ①循环反应在线粒体中进行,为不可逆反应。 ②每完成一次循环,氧化分解掉一分子乙酰基,可生成 12 分子 ATP。 ③循环的中间产物既不能通过此循环反应生成,也不被此循环反应所消耗。 ④循环中有两次脱羧反应,生成两分子 CO2。 ⑤循环中有四次脱氢反应,生成三分子 NADH 和一分子 FADH2。 ⑥循环中有一次直接产能反应,生成一分子 GTP。 ⑦三羧酸循环的关键酶是柠檬酸合酶、异柠檬酸脱氢酶和 α-酮戊二酸脱氢酶系,且 α-酮戊二酸脱氢酶系的结构 与丙酮酸脱氢酶系相似,辅助因子完全相同。 六、糖有氧氧化的生理意义: 1.是糖在体内分解供能的主要途径:⑴ 生成的 ATP 数目远远多于糖的无氧酵解生成的 ATP 数目;⑵ 机体内 大多数组织细胞均通过此途径氧化供能。 2.是糖、脂、蛋白质氧化供能的共同途径:糖、脂、蛋白质的分解产物主要经此途径彻底氧化分解供能。 3.是糖、脂、蛋白质相互转变的枢纽:有氧氧化途径中的中间代谢物可以由糖、脂、蛋白质分解产生,某些中 间代谢物也可以由此途径逆行而相互转变。 七、有氧氧化的调节和巴斯德效应: 丙酮酸脱氢酶系受乙酰 CoA、ATP 和 NADH 的变构抑制,受 AMP、ADP 和 NAD+的变构激活。异柠檬酸脱氢 酶是调节三羧酸循环流量的主要因素,ATP 是其变构抑制剂,AMP 和 ADP 是其变构激活剂。 巴斯德效应:糖的有氧氧化可以抑制糖的无氧酵解的现象。有氧时,由于酵解产生的 NADH 和丙酮酸进入线粒 体而产能,故糖的无氧酵解受抑制。 八、磷酸戊糖途径: