Circulation Atmegiso tmO Learn and live JOURNAL OF THE AMERICAN HEART ASSOCIATION Part 10.9: Electric shock and lightning strikes Circulation 2005: 1 12, 154-155; originally published online Nov 28, 2005 DOI: 10.1161/CIRCULATIONAHA. 105.166571 Circulation is published by the American Heart Association. 7272 Greenville Avenue, Dallas, Tx 72514 Copyright o 2005 American Heart Association. All rights reserved. Print ISSN: 0009-7322. Online ISSN:15244539 The online version of this article, along with updated information and services, is located on the world wide web at http://circ.ahajournals.org/cgi/content/full/112/24suppl/iv-154 Subscriptions: Information about subscribing to Circulation is online at http://circ.ahajournals.org/subsriptions/ Permissions: Permissions Rights Desk, Lippincott Williams Wilkins, 351 West Cam Street. Baltimore MD 21202-2436 Phone 410-5280-4050. Fax: 410-528-8550 En journalpermissions@lww.com Reprints: Information about reprints can be found online at http://www.Iww.com/static/html/reprints.html Downloaded from circ. ahajournals. org by on February 21, 2006
ISSN: 1524-4539 Copyright © 2005 American Heart Association. All rights reserved. Print ISSN: 0009-7322. Online 72514 Circulation is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX DOI: 10.1161/CIRCULATIONAHA.105.166571 Circulation 2005;112;154-155; originally published online Nov 28, 2005; Part 10.9: Electric Shock and Lightning Strikes http://circ.ahajournals.org/cgi/content/full/112/24_suppl/IV-154 located on the World Wide Web at: The online version of this article, along with updated information and services, is http://www.lww.com/static/html/reprints.html Reprints: Information about reprints can be found online at journalpermissions@lww.com Street, Baltimore, MD 21202-2436. Phone 410-5280-4050. Fax: 410-528-8550. Email: Permissions: Permissions & Rights Desk, Lippincott Williams & Wilkins, 351 West Camden http://circ.ahajournals.org/subsriptions/ Subscriptions: Information about subscribing to Circulation is online at Downloaded from circ.ahajournals.org by on February 21, 2006
Part 10.9: Electric Shock and Lightning Strikes E lectric shock and lightning strike injuries result from the Lightning can also have widespread effects on the cardio- direct effects of current on the heart and brain and on cell vascular system, producing extensive catecholamine release membranes and vascular smooth muscle. Additional injuries or autonomic stimulation. The victim may develop hyperten- result from the conversion of electric energy into heat energy sion, tachycardia, nonspecific electrocardiographic changes as current passes through body tissues including prolongation of the QT interval and transient T-wave inversion), and myocardial necrosis with release of Background creatine kinase-MB fraction Lightning can produce a wide spectrum of peripheral and Electric shock central neurologic injuries. The current can produce brain Factors that determine the site and severity of electric trauma hemorrhages. edema, and small-vessel and neuronal injury are the magnitude of energy delivered, voltage, resistance to Hypoxic encephalopathy can result from cardiac arrest current flow, type of current, duration of contact with the Victims are most likely to die of lightning injury if they current source, and current pathway. experience immediate respiratory or cardiac arrest and no High-tension current generally causes the most serious treatment is provided. Patients who do not suffer respiratory njuries, although fatal electrocutions may occur with house- hold current(eg, 110 V in the United States and Canada and r cardiac arrest and those who respond to immediate treatment have an excellent chance of recovery. Therefore, 220 V in Europe, Australia, and Asia). I Contact with alter- when multiple victims are struck simultaneously by lightning, nating current at 60 cycles per second (the frequency used in rescuers should give the highest priority to patients in may cause tetanic skeletal muscle contractions, preventing Victims with respiratory arrest may require only ventila- self-release from the source of the electricity and thereby tion and oxygenation to avoid secondary hypoxic cardiac leading to prolonged exposure. The repetitive frequency of arrest. For victims in cardiac arrest. treatment should be early alternating current also increases the likelihood of current aggressive, and persistent. Resuscitative attempts may have igh the heart during the relative refractory period higher success rates in lightning victims than in patients with (the "vulnerable period")of the cardiac cycle. This exposure cardiac arrest from other causes, and efforts may be effective can precipitate ventricular fibrillation (VE), which is analo- even when the interval before the resuscitative attempt is gous to the R-on-T phenomenon. 2 prolonged. 2 Lightning Strike The mortality rate from lightning injuries is 30%, and up to Modifications to Basic Life Support 70% of survivors sustain significant morbidity. 3-5 The pre The rescuer must first be certain that rescue efforts will not sentation of lightning strike injuries varies widely, even put him or her in danger of electric shock. When the scene is among groups of people struck at the same time. 6 In some safe(the danger of shock has been removed), determine the victims symptoms are mild and require little medical atten- victims cardiorespiratory status. Immediately after electro- tion, whereas fatal injuries occur in others. 7.8 cution, respiration or circulation or both may fail. Vigorou The primary cause of death in victims of lightning strike resuscitative measures are indicated even for those who ardiac arrest, which may be associated with primary VF or appear dead on initial evaluation. Because many victims are asystole 7-10 Lightning acts as an instantaneous, massive young, without sting cardiopulmonary disease, they direct current shock, simultaneously depolarizing the entire have a good chance for survival if immediate support of myocardium.&11 In many cases intrinsic cardiac automaticity cardiopulmonary function is provided may spontaneously restore organized cardiac activity and If spontaneous respiration or circulation is absent, initiate perfusing rhythm. But concomitant respiratory arrest due immediate BLS, including activation of the emergency med- thoracic muscle spasm and suppression of the respiratory cal services(EMS) system, provision of prompt CPR, and center may continue after return of spontaneous circulation. use of a defibrillator when available. Immediate provision of Unless ventilation is supported, a secondary hypoxic(asphyx ventilation and compressions (if needed) is essential. In ial) cardiac arrest will develop. 2 addition, use the automated external defibrillator(AED)to identify and treat ventricular tachycardia or VF. Maintain spinal stabilization during extrication and treat ment if there is a likelihood of head or neck trauma. 13, 14 Both (Circulation. 2005: 112: IV-154-IV-155) lightning and electrical o 2005 American Heart Association including injury to the spine l4 and muscular strains, internal This special supplement to Circulation is freely available http://www.circulationaha.org injuries from being thrown, and fractures caused by the tetanic response of skeletal muscles. 5 Remove smolderin DOI: 10.1161/CIRCULATIONAHA. 105.166571 clothing, shoes, and belts to prevent further therma ⅣVl54
Part 10.9: Electric Shock and Lightning Strikes Electric shock and lightning strike injuries result from the direct effects of current on the heart and brain and on cell membranes and vascular smooth muscle. Additional injuries result from the conversion of electric energy into heat energy as current passes through body tissues. Background Electric Shock Factors that determine the site and severity of electric trauma are the magnitude of energy delivered, voltage, resistance to current flow, type of current, duration of contact with the current source, and current pathway. High-tension current generally causes the most serious injuries, although fatal electrocutions may occur with household current (eg, 110 V in the United States and Canada and 220 V in Europe, Australia, and Asia).1 Contact with alternating current at 60 cycles per second (the frequency used in most US household and commercial sources of electricity) may cause tetanic skeletal muscle contractions, preventing self-release from the source of the electricity and thereby leading to prolonged exposure. The repetitive frequency of alternating current also increases the likelihood of current flow through the heart during the relative refractory period (the “vulnerable period”) of the cardiac cycle. This exposure can precipitate ventricular fibrillation (VF), which is analogous to the R-on-T phenomenon.2 Lightning Strike The mortality rate from lightning injuries is 30%, and up to 70% of survivors sustain significant morbidity.3–5 The presentation of lightning strike injuries varies widely, even among groups of people struck at the same time.6 In some victims symptoms are mild and require little medical attention, whereas fatal injuries occur in others.7,8 The primary cause of death in victims of lightning strike is cardiac arrest, which may be associated with primary VF or asystole.7–10 Lightning acts as an instantaneous, massive direct current shock, simultaneously depolarizing the entire myocardium.8,11 In many cases intrinsic cardiac automaticity may spontaneously restore organized cardiac activity and a perfusing rhythm. But concomitant respiratory arrest due to thoracic muscle spasm and suppression of the respiratory center may continue after return of spontaneous circulation. Unless ventilation is supported, a secondary hypoxic (asphyxial) cardiac arrest will develop.12 Lightning can also have widespread effects on the cardiovascular system, producing extensive catecholamine release or autonomic stimulation. The victim may develop hypertension, tachycardia, nonspecific electrocardiographic changes (including prolongation of the QT interval and transient T-wave inversion), and myocardial necrosis with release of creatine kinase-MB fraction. Lightning can produce a wide spectrum of peripheral and central neurologic injuries. The current can produce brain hemorrhages, edema, and small-vessel and neuronal injury. Hypoxic encephalopathy can result from cardiac arrest. Victims are most likely to die of lightning injury if they experience immediate respiratory or cardiac arrest and no treatment is provided. Patients who do not suffer respiratory or cardiac arrest and those who respond to immediate treatment have an excellent chance of recovery. Therefore, when multiple victims are struck simultaneously by lightning, rescuers should give the highest priority to patients in respiratory or cardiac arrest. Victims with respiratory arrest may require only ventilation and oxygenation to avoid secondary hypoxic cardiac arrest. For victims in cardiac arrest, treatment should be early, aggressive, and persistent. Resuscitative attempts may have higher success rates in lightning victims than in patients with cardiac arrest from other causes, and efforts may be effective even when the interval before the resuscitative attempt is prolonged.12 Modifications to Basic Life Support The rescuer must first be certain that rescue efforts will not put him or her in danger of electric shock. When the scene is safe (the danger of shock has been removed), determine the victim’s cardiorespiratory status. Immediately after electrocution, respiration or circulation or both may fail. Vigorous resuscitative measures are indicated even for those who appear dead on initial evaluation. Because many victims are young, without preexisting cardiopulmonary disease, they have a good chance for survival if immediate support of cardiopulmonary function is provided. If spontaneous respiration or circulation is absent, initiate immediate BLS, including activation of the emergency medical services (EMS) system, provision of prompt CPR, and use of a defibrillator when available. Immediate provision of ventilation and compressions (if needed) is essential. In addition, use the automated external defibrillator (AED) to identify and treat ventricular tachycardia or VF. Maintain spinal stabilization during extrication and treatment if there is a likelihood of head or neck trauma.13,14 Both lightning and electrical trauma often cause multiple trauma, including injury to the spine14 and muscular strains, internal injuries from being thrown, and fractures caused by the tetanic response of skeletal muscles.15 Remove smoldering clothing, shoes, and belts to prevent further thermal damage. (Circulation. 2005;112:IV-154-IV-155.) © 2005 American Heart Association. This special supplement to Circulation is freely available at http://www.circulationaha.org DOI: 10.1161/CIRCULATIONAHA.105.166571 IV-154
Part 10.9: Electric shock and Lightning strikes V-154 Modifications to Advanced Cardiovascular treatment have an excellent chance of recovery. Once the Life Support ene is safe, rescuers should provide prompt CPR and early Rescuers must be sure that the scene is safe. patients who are defibrillation even when the victim appears dead. Electric unresponsive after an electrical injury may be in either shock and lightning injuries can cause ventricular fibrillation respiratory or cardiac arrest. Thus, airway control, prompt or asystole, musculoskeletal injuries, organ damage, and CPR, and attempts at defibrillation (if indicated) are critically ternal and external burns. Early insertion of an advanced with the ACLS techniques outline er serious arrhythmlas airway and volume administration are often required, and important. Treat VF, asystole, and othe early consultation with experts in these injuries Quickly start CPR and attempt defibrillation at the scene if needed. Then take steps to manage the airway, including early placement of an advanced airway(eg, endotracheal References intubation). Establishing an may be difficult for L. Budnick LD. Bathtub-related electrocutions in the United States. 1979 to 1982.JAMA.1984:252918-920 patients with electric burns of the face, mouth, or anterior 2. Geddes LA, Bourland JD, Ford G. The mechanism underlying sudden neck. Extensive soft-tissue swelling may develop rapidly, death from electric shock. Med Instrum. 1986: 20: 303-315 complicating airway control measures. Thus, early intubation 3. Cooper MA. Lightning injuries: prognostic signs for death. Ann Emerg should be performed for patients with evidence of extensive Med.19809134-138 4. Kleinschmidt-DeMasters BK Neuropathology of lightning strike injuries. burns even if the patient has begun to breathe spontaneously Semin NeuroL. 1995: 15: 323-328 For victims with hypovolemic shock or significant tissue 5. Stewart CE. When lightning strikes. Emerg Med Serv. 2000: 29: 57-67: destruction, rapid intravenous fluid administration is indi 6. Fahmy FS, Brinsden MD, Smith J, Frame JD. Lightning: the multisystem cated to counteract shock and correct ongoing fluid losses due group injuries. JTr to third spacing. Fluid administration should be adequate to 7. Patten BM. Lightning and electrical injuries. Neurol Clin. 1992: 10 maintain diuresis to facilitate excretion of myoglobin, potas- 1047-105 ium, and other byproducts of tissue destruction(this is 8. Browne BJ, Gaasch WR. Electrical injuries and lightning. Emerg Med patients with electrical injury ). 9. Kleiner JP, wilkin JH. Cardiac effects of lightning strike. JAMA. 1978 significant as the external injuries may appear after electro- 240:2757-2759 thermal shock, the underlying tissue damage is far more 10. Lichtenberg R, Dries D, Ward K, Marshall w, Scanlon P Cardiovascular effects of lightning strikes. J Am Coll Cardiol. 1993: 21: 531-536 extensive. Early consultation with or transfer to a physicia care of lightning and electrical injuries. Semin and a facility (eg, burn center) familiar with treatment of these injuries is recommended. Survivors may have per 12. Milzman DP, Moskowitz L, Hardel M. Lightning strikes at a mass thering. South Med J. 1999: 92: 708-710 nent neurologic and cardiac sequelae 13. Duclos PJ. Sanderson LM. An epidemiological description of lightning related deaths in the United States. Int J EpideioL. 1990: 19: 673-679 Summary 14. Epperly TD, Stewart JR. The physical effects of lightning injury. J Fam Although morbidity and mortality from electric shock and act.1989:29267-272 15. Whitcomb D, Martinez JA, Daberkow D Lightning injuries. South Med htning strike is high, patients who respond to immediate J2002;95:1331-1334
Modifications to Advanced Cardiovascular Life Support Rescuers must be sure that the scene is safe. Patients who are unresponsive after an electrical injury may be in either respiratory or cardiac arrest. Thus, airway control, prompt CPR, and attempts at defibrillation (if indicated) are critically important. Treat VF, asystole, and other serious arrhythmias with the ACLS techniques outlined in these guidelines. Quickly start CPR and attempt defibrillation at the scene if needed. Then take steps to manage the airway, including early placement of an advanced airway (eg, endotracheal intubation). Establishing an airway may be difficult for patients with electric burns of the face, mouth, or anterior neck. Extensive soft-tissue swelling may develop rapidly, complicating airway control measures. Thus, early intubation should be performed for patients with evidence of extensive burns even if the patient has begun to breathe spontaneously. For victims with hypovolemic shock or significant tissue destruction, rapid intravenous fluid administration is indicated to counteract shock and correct ongoing fluid losses due to third spacing. Fluid administration should be adequate to maintain diuresis to facilitate excretion of myoglobin, potassium, and other byproducts of tissue destruction (this is particularly true for patients with electrical injury).11 As significant as the external injuries may appear after electrothermal shock, the underlying tissue damage is far more extensive. Early consultation with or transfer to a physician and a facility (eg, burn center) familiar with treatment of these injuries is recommended. Survivors may have permanent neurologic and cardiac sequelae. Summary Although morbidity and mortality from electric shock and lightning strike is high, patients who respond to immediate treatment have an excellent chance of recovery. Once the scene is safe, rescuers should provide prompt CPR and early defibrillation even when the victim appears dead. Electric shock and lightning injuries can cause ventricular fibrillation or asystole, musculoskeletal injuries, organ damage, and internal and external burns. Early insertion of an advanced airway and volume administration are often required, and early consultation with experts in these injuries is recommended. References 1. Budnick LD. Bathtub-related electrocutions in the United States, 1979 to 1982. JAMA. 1984;252:918 –920. 2. Geddes LA, Bourland JD, Ford G. The mechanism underlying sudden death from electric shock. Med Instrum. 1986;20:303–315. 3. Cooper MA. Lightning injuries: prognostic signs for death. Ann Emerg Med. 1980;9:134 –138. 4. Kleinschmidt-DeMasters BK. Neuropathology of lightning strike injuries. Semin Neurol. 1995;15:323–328. 5. Stewart CE. When lightning strikes. Emerg Med Serv. 2000;29:57– 67; quiz 103. 6. Fahmy FS, Brinsden MD, Smith J, Frame JD. Lightning: the multisystem group injuries. J Trauma. 1999;46:937–940. 7. Patten BM. Lightning and electrical injuries. Neurol Clin. 1992;10: 1047–1058. 8. Browne BJ, Gaasch WR. Electrical injuries and lightning. Emerg Med Clin North Am. 1992;10:211–229. 9. Kleiner JP, Wilkin JH. Cardiac effects of lightning strike. JAMA. 1978; 240:2757–2759. 10. Lichtenberg R, Dries D, Ward K, Marshall W, Scanlon P. Cardiovascular effects of lightning strikes. J Am Coll Cardiol. 1993;21:531–536. 11. Cooper MA. Emergent care of lightning and electrical injuries. Semin Neurol. 1995;15:268 –278. 12. Milzman DP, Moskowitz L, Hardel M. Lightning strikes at a mass gathering. South Med J. 1999;92:708 –710. 13. Duclos PJ, Sanderson LM. An epidemiological description of lightningrelated deaths in the United States. Int J Epidemiol. 1990;19:673– 679. 14. Epperly TD, Stewart JR. The physical effects of lightning injury. J Fam Pract. 1989;29:267–272. 15. Whitcomb D, Martinez JA, Daberkow D. Lightning injuries. South Med J. 2002;95:1331–1334. Part 10.9: Electric Shock and Lightning Strikes IV-155