教学大纲 第1章医学影像学前沿 知识点 1.医学成像信息学及其在转化医学中的作用 2.在医疗治疗护理过程中,成像与预防,诊断和治疗间的交织性质 3.本学科过去和当前的挑战 K 1 Introduction of medical imaging informatics and its role in transforming healthcare research 2. Touching upon the interwoven nature of imaging with preventative, diagnostic, and therapeutic elements of patient 3. Illustrating both past and current challenges of the discipline 第2章解剖与生理学成像介绍 知识点 1.临床成像模态(即投影κ射线,计算机断层扫描(CT),磁共振(MR),超声)以及解剖和生 理学成像的初步综述。 2.模态包括核心物理学原理和图像形成技术 3.从投影和横切成像角度呈现解剖和生理学概述,并详细讲述一些系统。 1. Reviewing clinical imaging modalities (i.e, projectional x-ray, computed tomography (CT), magnetic resonance (MR), ultrasound) and a primer on imaging anatomy and physiology 2. Modality encompassing core physics principles and image formation techniques 3. Presenting an overview of anatomy and physiology from the perspective of projectional and crosssectional imaging A few systems are covered in detail 第3章医疗信息系统和架构 知识点 1.解决如何在分布式的、内容不同的电子医疗记录(EMR)中存储和访问病患影像和其他病患信 2.描述主要信息系统(PACS;医院信息系统HS等)以及表示和传送数据(H7, DI COM)的不同 数据标准。 3.简述临床数据库和信息处理时的分布式架构(对等,网格计算) Key points 1. Tackling the question of how we store and access imaging and other patient information as part of a distributed and heterogeneous emr 2. Providing major information systems(PACS; HIS)and different data standards(HL7 DICOM) 3. Discussing distributed architectures applid to clinical databases(peer-to-peer, grid computing) 第4章医学数据可视化 知识点 1.以支持医师认知任务的方式集成和呈现患者信息。 2.介绍与医疗数据可视化相关的工作,如列表、表格、图表、图形和树等 3.基于(任务)上下文和用户建模的定义,示例出组合可视组件的方法 ey points 1. Integrating and presenting patient information to support the physician's cognitive tasks 2. Presenting works related to the visualization of medical data including graphical metaphors (lists and tables; plots and charts; graphs and trees; and pictograms)
教学大纲 第1章医学影像学前沿 知识点 1. 医学成像信息学及其在转化医学中的作用; 2. 在医疗治疗护理过程中,成像与预防,诊断和治疗间的交织性质; 3. 本学科过去和当前的挑战。 Key points 1. Introduction of medical imaging informatics and its role in transforming healthcare research. 2. Touching upon the interwoven nature of imaging with preventative, diagnostic, and therapeutic elements of patient care. 3. Illustrating both past and current challenges of the discipline. 第2章解剖与生理学成像介绍 知识点 1.临床成像模态(即投影x射线,计算机断层扫描(CT),磁共振(MR),超声)以及解剖和生 理学成像的初步综述。 2.模态包括核心物理学原理和图像形成技术。 3.从投影和横切成像角度呈现解剖和生理学概述,并详细讲述一些系统。 Key points 1. Reviewing clinical imaging modalities (i.e., projectional x-ray, computed tomography (CT), magnetic resonance (MR), ultrasound) and a primer on imaging anatomy and physiology. 2. Modality encompassing core physics principles and image formation techniques. 3. Presenting an overview of anatomy and physiology from the perspective of projectional and crosssectional imaging. A few systems are covered in detail. 第3章医疗信息系统和架构 知识点 1.解决如何在分布式的、内容不同的电子医疗记录(EMR)中存储和访问病患影像和其他病患信 息。 2.描述主要信息系统(PACS;医院信息系统HIS等)以及表示和传送数据(HL7,DICOM)的不同 数据标准。 3.简述临床数据库和信息处理时的分布式架构(对等,网格计算)。 Key points 1. Tackling the question of how we store and access imaging and other patient information as part of a distributed and heterogeneous EMR. 2. Providing major information systems (PACS; HIS) and different data standards (HL7 DICOM) . 3. Discussing distributed architectures applid to clinical databases (peer-to-peer, grid computing). 第4章医学数据可视化 知识点 1.以支持医师认知任务的方式集成和呈现患者信息。 2.介绍与医疗数据可视化相关的工作,如列表、表格、图表、图形和树等。 3.基于(任务)上下文和用户建模的定义,示例出组合可视组件的方法。 Key points 1. Integrating and presenting patient information to support the physician’s cognitive tasks. 2. Presenting works related to the visualization of medical data including graphical metaphors (lists and tables; plots and charts; graphs and trees; and pictograms)
3. Illustrating the methods to combine the visual components based on a definition of (task) context and user 第5章医学图像理解 知识点 医学成像信息技术侧重于将图像与其他临床数据一起标准化,并且自动提取相关内容以指导医疗决 策过程。只有标准化医学图像,跨研究的定量比较才不会受到各种来源的偏差或伪像的影响。为了 创建科学质量的成像数据库,本章讲述图像捕获基础,并概述包含标准化过程的不同方面 1.强度标准化;去噪;滤波设计;图像分割。 2.线性和非线性图像配准方法及导航应用。 3.基于外观和形状区分描述子;特征提取、选择和降维方法 4.基于成像的解剖图谱,详细描述其构造和用法;理解基于人群的图谱和由于疾病发展引起 的差异的处理手段。 Medical imaging informatics focus on how imaging studies. alongside other clinical data. can be standardized and their content(automatically) extracted to guide medical decision making processes Unless medical images are standardized, quantitative comparisons across studies is subject to various sources of bias/artifacts that negatively influence assessment. For creating scientific-quality imaging databases, this chapter starts with the groundwork for understanding what exactly an image captures, and outlines the different aspects encompassing the standardization process 1. Intensity normalization; denoising; image segmentation. 2. Both linear and nonlinear image registration methods and its application in image navigation 3. Discussion of commonly extracted imaging features, including appearance-and shape-based descriptors; Image feature selection and dimensionality reduction methods is also provided 4. Description of the imaging-based anatomical atlases, detailing their construction and usage for understanding population-based norms and differences arising due to a disease process 第6章医疗数据建模 知识点 1.本章描述医学成像中经常遇到的关系。 2.本章聚集单个患者的观察结果以表征患者疾病的状态和行为,包括其自然过程和(治疗性) 干预的结果。 3.本章沿空间(如物理和解剖关系),时间(如临床事件序列)和临床导向模型(即专用于表 示医疗保健抽象的模型)组织这些影像信息。 4.讨论医疗数据模型设计的动机,描述以现象为中心的数据模型 Key points Describing the different types of relationships commonly encountered in medical imaging 2. Aggregate the observations for a single patient to characterize the state and behavior of the patient's disease, both in terms of its natural course and as the result of (therapeutic)interventions 3. The chapter organizes the information along spatial (physical and anatomical relations ), temporal (sequences of clinical events, episodes of care), and clinically-oriented models(those models specific to representing a healthcare 4. Discussion of the motivation behind the design of a medical data model. Describing phenomenon-centric data 第7章疾病櫬率图形模型 知识点 讲述贝叶斯信念网络(BBN),评估过去和当前这些模型在医疗环境的应用,讨论建立这些 模型的实际考虑和必须作出的假设。讲述特殊类型的信念网络,说明其用途。 2.讨论查询B趴N的算法和工具。考虑两大类查询:信念更新和遗传推理。前者在给定一些具体 证据的情况下重新计算网络中的后验概率;后者计算BBN的最优配置以最大化某些指定标准
3. Illustrating the methods to combine the visual components based on a definition of (task) context and user modeling. 第5章医学图像理解 知识点 医学成像信息技术侧重于将图像与其他临床数据一起标准化,并且自动提取相关内容以指导医疗决 策过程。只有标准化医学图像,跨研究的定量比较才不会受到各种来源的偏差或伪像的影响。为了 创建科学质量的成像数据库,本章讲述图像捕获基础,并概述包含标准化过程的不同方面: 1. 强度标准化;去噪;滤波设计;图像分割。 2. 线性和非线性图像配准方法及导航应用。 3. 基于外观和形状区分描述子;特征提取、选择和降维方法; 4. 基于成像的解剖图谱,详细描述其构造和用法;理解基于人群的图谱和由于疾病发展引起 的差异的处理手段。 Key points Medical imaging informatics focus on how imaging studies, alongside other clinical data, can be standardized and their content (automatically) extracted to guide medical decision making processes. Unless medical images are standardized, quantitative comparisons across studies is subject to various sources of bias/artifacts that negatively influence assessment. For creating scientific-quality imaging databases, this chapter starts with the groundwork for understanding what exactly an image captures, and outlines the different aspects encompassing the standardization process: 1. Intensity normalization; denoising; image segmentation. 2. Both linear and nonlinear image registration methods and its application in image navigation. 3. Discussion of commonly extracted imaging features, including appearance- and shape-based descriptors; Image feature selection and dimensionality reduction methods is also provided. 4. Description of the imaging-based anatomical atlases, detailing their construction and usage for understanding population-based norms and differences arising due to a disease process. 第6章医疗数据建模 知识点 1. 本章描述医学成像中经常遇到的关系。 2. 本章聚集单个患者的观察结果以表征患者疾病的状态和行为,包括其自然过程和(治疗性) 干预的结果。 3. 本章沿空间(如物理和解剖关系),时间(如临床事件序列)和临床导向模型(即专用于表 示医疗保健抽象的模型)组织这些影像信息。 4. 讨论医疗数据模型设计的动机,描述以现象为中心的数据模型。 Key points 1. Describing the different types of relationships commonly encountered in medical imaging. 2. Aggregate the observations for a single patient to characterize the state and behavior of the patient’s disease, both in terms of its natural course and as the result of (therapeutic) interventions. 3. The chapter organizes the information along spatial (physical and anatomical relations), temporal (sequences of clinical events, episodes of care), and clinically-oriented models (those models specific to representing a healthcare abstraction). 4. Discussion of the motivation behind the design of a medical data model. Describing phenomenon-centric data model. 第7章疾病概率图形模型 知识点 1. 讲述贝叶斯信念网络(BBN),评估过去和当前这些模型在医疗环境的应用,讨论建立这些 模型的实际考虑和必须作出的假设。讲述特殊类型的信念网络,说明其用途。 2. 讨论查询BBN的算法和工具。考虑两大类查询:信念更新和遗传推理。前者在给定一些具体 证据的情况下重新计算网络中的后验概率;后者计算BBN的最优配置以最大化某些指定标准。 精 念 准 准
3.提供精确和近似推理方法描述,讨论与信念网络评估相关的问题,寻求标准的技术准确度和 参数敏感性指标。给出BBN的医学示例应用,如基于案例的检索和图像处理任务 Key points 1. Handling Bayesian belief networks(BBNS), appraising past and current efforts to apply these models to the medical environment. Addressing the practical considerations in the building of these models and the assumptions that must be made 2. Addressing the algorithms and tools that enable us to query BBNs. Two broad classes of queries are considered belief updating, and abductive reasoning. The former entails the re-computation of posterior probabilities in a network given some specific evidence, the latter involves calculating the optimal configuration of the bBn in order to maximize some specified criteria 3. Describing the exact and approximate inference methods. Covering special types of belief networks. Illustrating their potential usage in medicine. Looking to standard technical accuracy metrics in parametric sensitivity analysi Concluding with some example applications of BBNs in medicine, including to support case-based retrieval and image process 第8章评估及总结 知识点 1.介绍生物统计学,包括对基本概念及不同情况和假设下评估假设的统计检验。 2.引入误差和性能评估讨论,包括灵敏度、特异性和接收器操作特性分析。 3.研究设计以不同类型的测试假设形成的实验描述,并讨论变量选择和样本大小/功率计算的 过程 4.简单描述研究偏差/误差的来源,以及决策的统计工具。 5.评估基于内容的图像检索和评估(系统)可用性 Key points Introducing biostatistics including basic concepts and the statistical tests that are used to evaluate hypotheses under different circumstances and assumptions 2. Discussion of error and performance assessment is introduced, including sensitivity/specificity and receiver operative characteristic analysi 3. Study design encompasses a description of the different types of experiments that can be formed to test a hypothesis, and goes over the process of variable selection and sample size/power calculations 4. Sources of study bias/error are briefly described, as are statistical tools for decision making 5. Evaluation the content-based image retrieval; and assessing(system)usability
3. 提供精确和近似推理方法描述,讨论与信念网络评估相关的问题,寻求标准的技术准确度和 参数敏感性指标。给出BBN的医学示例应用,如基于案例的检索和图像处理任务。 Key points 1. Handling Bayesian belief networks (BBNs), appraising past and current efforts to apply these models to the medical environment. Addressing the practical considerations in the building of these models and the assumptions that must be made. 2. Addressing the algorithms and tools that enable us to query BBNs. Two broad classes of queries are considered: belief updating, and abductive reasoning. The former entails the re-computation of posterior probabilities in a network given some specific evidence; the latter involves calculating the optimal configuration of the BBN in order to maximize some specified criteria. 3. Describing the exact and approximate inference methods. Covering special types of belief networks. Illustrating their potential usage in medicine. Looking to standard technical accuracy metrics in parametric sensitivity analysis. Concluding with some example applications of BBNs in medicine, including to support case-based retrieval and image processing tasks. 第8章评估及总结 知识点 1. 介绍生物统计学,包括对基本概念及不同情况和假设下评估假设的统计检验。 2. 引入误差和性能评估讨论,包括灵敏度、特异性和接收器操作特性分析。 3. 研究设计以不同类型的测试假设形成的实验描述,并讨论变量选择和样本大小/功率计算的 过程。 4. 简单描述研究偏差/误差的来源,以及决策的统计工具。 5. 评估基于内容的图像检索和评估(系统)可用性。 Key points 1. Introducing biostatistics including basic concepts and the statistical tests that are used to evaluate hypotheses under different circumstances and assumptions. 2. Discussion of error and performance assessment is introduced, including sensitivity/specificity and receiver operative characteristic analysis. 3. Study design encompasses a description of the different types of experiments that can be formed to test a hypothesis, and goes over the process of variable selection and sample size/power calculations. 4. Sources of study bias/error are briefly described, as are statistical tools for decision making. 5. Evaluation the content-based image retrieval; and assessing (system) usability