A Course Design Report Of Conceptual Design of the Wide-Body PIS-413 for Domestic Market in China In the course AIRCRAFT DESIGN Under the guidance of Dr.Song Wenbin Report presented by Liu Xiaoyu Wu Jiajun Zhang Junwen Du Yue Zhou Chen School of Aeronautics and Astronautics Shanghai Jiaotong University June,2015
A Course Design Report Of Conceptual Design of the Wide-Body PIS-413 for Domestic Market in China In the course AIRCRAFT DESIGN Under the guidance of Dr. Song Wenbin Report presented by Liu Xiaoyu Wu Jiajun Zhang Junwen Du Yue Zhou Chen School of Aeronautics and Astronautics Shanghai Jiaotong University June, 2015
Conceptual Design of the Wide-Body PIS-413 ABSTRACT Abstract Airports in Beijing(Capital Airport),Shanghai (Pudong and Hongqiao Airport), and Guangzhou(Baiyun Airport)have the largest passenger flow volume among all the airports in China.PIS-413 is a wide-body which is designed specially for transportation among these three cities.With its specific market position,airfoil-like fuselage design, and double ventral fin design,PIS-413 consumes less fuel and behaves well in flight and economic performance. KEY WOEDS:Wide-Body,Airfoil-Like Fuselage,Economic I
Conceptual Design of the Wide-Body PIS-413 ABSTRACT I Abstract Airports in Beijing (Capital Airport), Shanghai (Pudong and Hongqiao Airport), and Guangzhou (Baiyun Airport) have the largest passenger flow volume among all the airports in China. PIS-413 is a wide-body which is designed specially for transportation among these three cities. With its specific market position, airfoil-like fuselage design, and double ventral fin design, PIS-413 consumes less fuel and behaves well in flight and economic performance. KEY WOEDS: Wide-Body, Airfoil-Like Fuselage, Economic
Conceptual Design of the Wide-Body PIS-413 CONTENTS Contents_Toc423728370 I Market Demand Research. 1.1 PIS-413 -Specific Market Positioning..1 1.2 Market Demand Research-Three Cities........ 1.3 Design Philosophy........... …2 2 Main Parameters.…3 2.1 Design Task ....... …3 2.2 Main Parameters Selection................... …3 3 Weight Estimation.… …4 3.1 Crew and Passenger Weight......... …4 3.2 Final Weight Proportion ............. …4 3.3 Fuel Weight Proportion........... …5 3.4 Maximum Takeoff Weight Estimation. …5 4 Wing Load and TWR Estimation.........................................6 4.1 Landing Stage.… …6 4.2 Stall Speed 6 4.3 Cruise Stage... …7 4.4 Takeoff Stage8 4.5 Requirements of Maximum Ceiling........ .8 4.6 Requirements of Maximum Level Speed............9 4.7 Final Decision.... …9 5 Fuselage Design.… …10 5.1 Introduction and Considerations........... .10 5.2 Main Parameters. …10 5.3 Design of Forward and Aft Fuselage............ .12 5.3.1 Forward Fuselage Design............ 12 5.3.2 Aft Fuselage Design.......... 12 5.4 Airworthiness Related to Cabin Design 13 5.5 Fuselage Cross Section.................. 13 6 Cabin and Cargo Design.................... …14 6.1 Cabin Design… .14 6.1.1 Considerations......... .14 6.1.2 Cross Section Design................... 14 6.1.3 Arrangement of Toilets and Kitchen........ 15 6.1.4 Crew and Emergency Exits.16 6.2 Under Floor Cargo Container...... .17 7 Wing Design.… 18 7.1 Wing Configuration..... .18 7.2 AirfoIl Design..18 0
Conceptual Design of the Wide-Body PIS-413 CONTENTS II Contents_Toc423728370 1 Market Demand Research .....................................................................................1 1.1 PIS-413 — Specific Market Positioning...........................................................1 1.2 Market Demand Research — Three Cities ......................................................1 1.3 Design Philosophy.......................................................................................... 2 2 Main Parameters ..................................................................................3 2.1 Design Task .................................................................................................... 3 2.2 Main Parameters Selection ............................................................................ 3 3 Weight Estimation................................................................................4 3.1 Crew and Passenger Weight........................................................................... 4 3.2 Final Weight Proportion ................................................................................ 4 3.3 Fuel Weight Proportion.................................................................................. 5 3.4 Maximum Takeoff Weight Estimation........................................................... 5 4 Wing Load and TWR Estimation...........................................................6 4.1 Landing Stage ................................................................................................. 6 4.2 Stall Speed ...................................................................................................... 6 4.3 Cruise Stage .................................................................................................... 7 4.4 Takeoff Stage ..................................................................................................8 4.5 Requirements of Maximum Ceiling ...............................................................8 4.6 Requirements of Maximum Level Speed ....................................................... 9 4.7 Final Decision................................................................................................. 9 5 Fuselage Design..................................................................................................... 10 5.1 Introduction and Considerations................................................................. 10 5.2 Main Parameters .......................................................................................... 10 5.3 Design of Forward and Aft Fuselage.............................................................12 5.3.1 Forward Fuselage Design ....................................................................12 5.3.2 Aft Fuselage Design .............................................................................12 5.4 Airworthiness Related to Cabin Design ........................................................13 5.5 Fuselage Cross Section ..................................................................................13 6 Cabin and Cargo Design...................................................................... 14 6.1 Cabin Design..................................................................................................14 6.1.1 Considerations .....................................................................................14 6.1.2 Cross Section Design ...........................................................................14 6.1.3 Arrangement of Toilets and Kitchen ...................................................15 6.1.4 Crew and Emergency Exits..................................................................16 6.2 Under Floor Cargo Container........................................................................17 7 Wing Design ....................................................................................... 18 7.1 Wing Configuration...................................................................................... 18 7.2 Airfoil Design................................................................................................ 18
Conceptual Design of the Wide-Body PIS-413 CONTENTS 7.3 Wing Shape Design.............. .20 7.31 Wing Area.20 7.3.2 Aspect Ratio....... .20 7.3.3 Tip-Root Ratio.............. .21 7.3.4 Swept Angle..… 22 7.3.5 Other Parameters... 0…22 7.4 Flap Design......... …25 7.5 Wing Tip.. .27 8 Empennage and DVF Design....... …29 8.1 Layout Design.. …29 8.2 Horizontal Tail Design ............. …29 8.2.1 Tail Capacity.… …29 8.2.2 Horizontal Tail Position...... .30 8.2.3 Aerodynamic Characteristics... …30 8.3 Vertical Tail Design............. .32 8.3.1 Tail Capacity...... …32 8.3.2 Vertical Tail Position......32 8.3.3 Aerodynamic Characteristics.... …32 8.4 Double Ventral Fin...... …34 9 Aerodynamic Performance.................... …35 9.1 Lift Characteristics. …35 9.2 Drag Characteristic and Lift-Drag Ratio....... …41 9.2.1 Zero-Lift Drag Coefficient.41 9.2.2 Induced Drag Coefficient........ …45 9.2.3 Total Drag Coefficient and Lift-Drag Ratio....... .46 9.3 Summary.… …47 10 Engine Selection..........48 10.1 Powerplant and installation............... …48 10.1.1 Engine Type.… .48 10.1.2 Engine Installation...49 10.2 Geometrical Relationship for Separate Jets............. .50 11 Detailed Weight Calculation and Estimation of GC............................51 11.1 Detailed Weight Calculation ............. 51 11.1.1 Fuselage.. 51 11.1.2 Fuel Weight.… 51 11.1.3Tail …52 11.1.4Wing… …52 11.1.5 Mass of Nacelle,Landing Gear..53 11.1.6 Propulsion System............. …53 11.1.7 Fixed Equipment..... .54 11.1.8 Refined Take-off Weight........ …54 11.2 Estimation of Gravity Center................... .54 Ⅱ
Conceptual Design of the Wide-Body PIS-413 CONTENTS III 7.3 Wing Shape Design.......................................................................................20 7.3.1 Wing Area ...........................................................................................20 7.3.2 Aspect Ratio ........................................................................................20 7.3.3 Tip-Root Ratio .....................................................................................21 7.3.4 Swept Angle ........................................................................................ 22 7.3.5 Other Parameters................................................................................ 22 7.4 Flap Design................................................................................................... 25 7.5 Wing Tip ....................................................................................................... 27 8 Empennage and DVF Design...............................................................29 8.1 Layout Design............................................................................................... 29 8.2 Horizontal Tail Design ................................................................................. 29 8.2.1 Tail Capacity ....................................................................................... 29 8.2.2 Horizontal Tail Position .....................................................................30 8.2.3 Aerodynamic Characteristics..............................................................30 8.3 Vertical Tail Design ...................................................................................... 32 8.3.1 Tail Capacity ....................................................................................... 32 8.3.2 Vertical Tail Position .......................................................................... 32 8.3.3 Aerodynamic Characteristics.............................................................. 32 8.4 Double Ventral Fin ....................................................................................... 34 9 Aerodynamic Performance................................................................. 35 9.1 Lift Characteristics ....................................................................................... 35 9.2 Drag Characteristic and Lift-Drag Ratio.......................................................41 9.2.1 Zero-Lift Drag Coefficient ...................................................................41 9.2.2 Induced Drag Coefficient.................................................................... 45 9.2.3 Total Drag Coefficient and Lift-Drag Ratio........................................46 9.3 Summary ...................................................................................................... 47 10 Engine Selection ...............................................................................48 10.1 Powerplant and installation .........................................................................48 10.1.1 Engine Type ........................................................................................48 10.1.2 Engine Installation .............................................................................49 10.2 Geometrical Relationship for Separate Jets ................................................ 50 11 Detailed Weight Calculation and Estimation of GC .............................51 11.1 Detailed Weight Calculation .........................................................................51 11.1.1 Fuselage ...............................................................................................51 11.1.2 Fuel Weight..........................................................................................51 11.1.3 Tail ...................................................................................................... 52 11.1.4 Wing.................................................................................................... 52 11.1.5 Mass of Nacelle, Landing Gear ........................................................... 53 11.1.6 Propulsion System.............................................................................. 53 11.1.7 Fixed Equipment ................................................................................ 54 11.1.8 Refined Take-off Weight..................................................................... 54 11.2 Estimation of Gravity Center ....................................................................... 54
Conceptual Design of the Wide-Body PIS-413 CONTENTS 11.2.1 Gravity Center of the Wing...... .54 11.2.2 Gravity of the Fuselage........55 11.2.3 Gravity Center of the Tail ............. .55 11.2.4 Gravity Center of the Landing Gear...55 11.2.5 Final Decision of the Gravity Center.............. .56 12 Landing Gear Selection.......57 12.1 Landing Gear Disposition ........... 57 12.2 Type,Size and Inflation Pressure of the Tire.....................58 12.3 Wheel Design.… …59 12.4 Brake Design... .59 12.5 Shock Absorber Design............... .60 13 Flight Performance Analysis.............61 13.1 Takeoff performance............. .61 13.1.1 The Definition of Takeoff Speed and Relevant Regulations...............61 13.1.2 Full Engine Takeoff Performance...........62 13.1.3 Take-Off Climb Gradient................. .63 13.2 Cruise performance analysis............. .63 13.3 Maneuvering performance..... .64 13.3.1 Level Flight Speed............... .64 13.3.2 Turning Performance ........... .65 13.4 Declining process...65 13.5 Landing performance............. .66 13.5.1 The Definition and Relevant Provisions of the Landing Speed.........66 13.5.2 Landing Distance............. .66 13.6 Main performance data of PIS-413.... .67 14 Economic Analysis.................... .69 14.1D0 C Calculation… .71 14.1.1 Capital Cost...... .71 14.1.2 Airport Fees and Meal Cost..... …72 14.1.3 Crew Fees..... …73 14.1.4 Fuel Cost ........... 73 14.1.5 Maintenance Cost.............. …74 14.1.6 Total Cost......... …75 14.2 Comparison with Similar Types-Why More Economical. .75 15 Three-Dimensional Modeling.......... 77 15.1 Three-Dimensional Diagram........ …77 15.2 Three View............ …77 Division of Work.................. …79 Reference.… .80 IV
Conceptual Design of the Wide-Body PIS-413 CONTENTS IV 11.2.1 Gravity Center of the Wing................................................................. 54 11.2.2 Gravity of the Fuselage ....................................................................... 55 11.2.3 Gravity Center of the Tail ................................................................... 55 11.2.4 Gravity Center of the Landing Gear ................................................... 55 11.2.5 Final Decision of the Gravity Center .................................................. 56 12 Landing Gear Selection ..................................................................... 57 12.1 Landing Gear Disposition ............................................................................ 57 12.2 Type, Size and Inflation Pressure of the Tire............................................... 58 12.3 Wheel Design................................................................................................ 59 12.4 Brake Design................................................................................................. 59 12.5 Shock Absorber Design ................................................................................60 13 Flight Performance Analysis ............................................................. 61 13.1 Takeoff performance .....................................................................................61 13.1.1 The Definition of Takeoff Speed and Relevant Regulations ...............61 13.1.2 Full Engine Takeoff Performance....................................................... 62 13.1.3 Take-Off Climb Gradient.................................................................... 63 13.2 Cruise performance analysis ........................................................................ 63 13.3 Maneuvering performance...........................................................................64 13.3.1 Level Flight Speed............................................................................... 64 13.3.2 Turning Performance ......................................................................... 65 13.4 Declining process ......................................................................................... 65 13.5 Landing performance ................................................................................... 66 13.5.1 The Definition and Relevant Provisions of the Landing Speed .........66 13.5.2 Landing Distance ................................................................................ 66 13.6 Main performance data of PIS-413 .............................................................. 67 14 Economic Analysis ............................................................................69 14.1 DOC Calculation............................................................................................71 14.1.1 Capital Cost..........................................................................................71 14.1.2 Airport Fees and Meal Cost ................................................................ 72 14.1.3 Crew Fees ............................................................................................ 73 14.1.4 Fuel Cost ............................................................................................. 73 14.1.5 Maintenance Cost ............................................................................... 74 14.1.6 Total Cost............................................................................................ 75 14.2 Comparison with Similar Types — Why More Economical......................... 75 15 Three-Dimensional Modeling............................................................ 77 15.1 Three-Dimensional Diagram ........................................................................77 15.2 Three View.....................................................................................................77 Division of Work ................................................................................... 79 Reference..............................................................................................80
Conceptual Design of the Wide-Body PIS-413 MARKET DEMAND RESEARCH 1 Market Demand Research 1.1 PIS-413-Specific Market Positioning In order to know the domestic market demand,search the ranking of passenger throughput of civil aviation airport in internet. Table 1.Ranking of Passenger Throughput of Civil Aviation Airport(CHINA,2014) Ranking City Airport Ranking City Airport Name Name 1 BEIJING PEK 11 XIAMEN XMN GUANGZHOU CAN 12 CHANGSHA CSX 3 SHANGHAI PVG 13 WUHAN WUH 4 SHANGHAI SHA 14 QINGDAO TAO 5 CHENGDU CTU 15 URUMCHI URC 6 SHENZHEN SZX 16 NANJING NKG 7 KUNMING KMG 17 ZHENGZHOU CGO 8 CHONGQING CKG 18 SANYA SYX 9 XIAN XIY 19 HAIKOU HAK 10 HANGZHOU HGH 20 DALIAN DLC It is obvious that airports in Beijing (Capital Airport),Shanghai (Pudong and Hongqiao Airport),and Guangzhou (Baiyun Airport)have the largest passenger flow volume among all the airports in China.Market demand among these three cities must be tremendous.The group decided to design a wide-body specific for the transportation among these three cities.The group named this new type "Propulsion- Infinity-Skyline"(PIS-413). 1.2 Market Demand Research-Three Cities How large exactly is the market demand among Beijing,Shanghai,and Guangzhou?Take the airlines between Beijing and Shanghai as an example.Flights available between Beijing and Shanghai on 8th May,2015 is shown in Table 2. 1
Conceptual Design of the Wide-Body PIS-413 MARKET DEMAND RESEARCH 1 1 Market Demand Research 1.1 PIS-413 — Specific Market Positioning In order to know the domestic market demand, search the ranking of passenger throughput of civil aviation airport in internet. Table 1. Ranking of Passenger Throughput of Civil Aviation Airport (CHINA, 2014) Ranking City Airport Name Ranking City Airport Name 1 BEIJING PEK 11 XIAMEN XMN 2 GUANGZHOU CAN 12 CHANGSHA CSX 3 SHANGHAI PVG 13 WUHAN WUH 4 SHANGHAI SHA 14 QINGDAO TAO 5 CHENGDU CTU 15 URUMCHI URC 6 SHENZHEN SZX 16 NANJING NKG 7 KUNMING KMG 17 ZHENGZHOU CGO 8 CHONGQING CKG 18 SANYA SYX 9 XIAN XIY 19 HAIKOU HAK 10 HANGZHOU HGH 20 DALIAN DLC It is obvious that airports in Beijing (Capital Airport), Shanghai (Pudong and Hongqiao Airport), and Guangzhou (Baiyun Airport) have the largest passenger flow volume among all the airports in China. Market demand among these three cities must be tremendous. The group decided to design a wide-body specific for the transportation among these three cities. The group named this new type “PropulsionInfinity-Skyline” (PIS-413). 1.2 Market Demand Research — Three Cities How large exactly is the market demand among Beijing, Shanghai, and Guangzhou? Take the airlines between Beijing and Shanghai as an example. Flights available between Beijing and Shanghai on 8th May, 2015 is shown in Table 2
Conceptual Design of the Wide-Body PIS-413 MARKET DEMAND RESEARCH Table 2.Flights available between Beijing and Shanghai on 8th May,2015. Number of Number of Type(Middle/Narrow) Flight Type(Wide) Flight B737 16 A330 44 A320 6 B777 17 A321 6 B767 ? B747 3 Total 28 Total 68 The statistics show that there are 4 flights between Beijing and Shanghai per hour (on average).About 30%of them are middle or narrow size aircrafts which provide less than 200 seats.The others are wide-bodies which provides 250 to 300 seats.The frequency of flights is high while seats provided per flight is not very enough. Table 3.Distance between three supercities in China. BEIJING GUANGZHOU SHANGHAI BEIJING - 1908 1008 GUANGZHOU 1908 1308 SHANGHAI 1008 1308 The new type wide-body PIS-413 is designed to fill the vacancy of market demand between these three "supercities".Its flight range is not necessary to be very large. However,it should be able to carry more passengers than the present types. 1.3 Design Philosophy PIS-413 has the following design philosophies: (1)Not very large flight range (compared to normal wide-bodies) (2)Not very high cruise speed (3)Relatively low fuel consumption (4)Relatively small in weight (5)Larger passenger capacity
Conceptual Design of the Wide-Body PIS-413 MARKET DEMAND RESEARCH 2 Table 2. Flights available between Beijing and Shanghai on 8th May, 2015. Type(Middle/Narrow) Number of Flight Type(Wide) Number of Flight B737 16 A330 44 A320 6 B777 17 A321 6 B767 4 B747 3 Total 28 Total 68 The statistics show that there are 4 flights between Beijing and Shanghai per hour (on average). About 30% of them are middle or narrow size aircrafts which provide less than 200 seats. The others are wide-bodies which provides 250 to 300 seats. The frequency of flights is high while seats provided per flight is not very enough. Table 3. Distance between three supercities in China. BEIJING GUANGZHOU SHANGHAI BEIJING --- 1908 1008 GUANGZHOU 1908 --- 1308 SHANGHAI 1008 1308 --- The new type wide-body PIS-413 is designed to fill the vacancy of market demand between these three “supercities”. Its flight range is not necessary to be very large. However, it should be able to carry more passengers than the present types. 1.3 Design Philosophy PIS-413 has the following design philosophies: (1) Not very large flight range (compared to normal wide-bodies) (2) Not very high cruise speed (3) Relatively low fuel consumption (4) Relatively small in weight (5) Larger passenger capacity
Conceptual Design of the Wide-Body PIS-413 MAIN PARAMETERS 2 Main Parameters 2.1 Design Task PIS-413 is expected to be a relatively light,low fuel consuming,and with large passenger capacity aircraft. 2.2 Main Parameters Selection Selected main parameters are given in Table 4.(Calculation of maximum takeoff weight is given in Part 3,i.e.the next part.Calculation of overall length and width are given in Part 5 and 6.)Parameters like cruise Mach number are decided with reference to the corresponding parameters of some mainstream types. Table 4.Main parameters and comparison with some mainstream types. PIS-413 A330-200 B777-200 B737-900 Seats 390~400 253 301 215 Full Load Range (km) about 8000 12500 13890 4996 Cruise Mach Number 0.78 0.82 0.84 0.78 Max Cruise Mach Number 0.84 0.86 0.89 0.82 Engines 2 2 2 2 Overall Length (m) 53.03 58.8 63.7 42.1 Overall Width (m) 6.517 5.28 6.19 3.76 Max Take-Off Weight(t) 175.15 230 347.45 85.153 Take-Off Runway Length (Max Weight) about 2000 2220-2500 3536 2450 3
Conceptual Design of the Wide-Body PIS-413 MAIN PARAMETERS 3 2 Main Parameters 2.1 Design Task PIS-413 is expected to be a relatively light, low fuel consuming, and with large passenger capacity aircraft. 2.2 Main Parameters Selection Selected main parameters are given in Table 4. (Calculation of maximum takeoff weight is given in Part 3, i.e. the next part. Calculation of overall length and width are given in Part 5 and 6.) Parameters like cruise Mach number are decided with reference to the corresponding parameters of some mainstream types. Table 4. Main parameters and comparison with some mainstream types. PIS-413 A330-200 B777-200 B737-900 Seats 390~400 253 301 215 Full Load Range (km) about 8000 12500 13890 4996 Cruise Mach Number 0.78 0.82 0.84 0.78 Max Cruise Mach Number 0.84 0.86 0.89 0.82 Engines 2 2 2 2 Overall Length (m) 53.03 58.8 63.7 42.1 Overall Width (m) 6.517 5.28 6.19 3.76 Max Take-Off Weight (t) 175.15 230 347.45 85.153 Take-Off Runway Length (Max Weight) about 2000 2220-2500 3536 2450
Conceptual Design of the Wide-Body PIS-413 WEIGHT ESTIMATION 3 Weight Estimation 3.1 Crew and Passenger Weight A designed capacity of 400 seats for the full economy class version includes 12 flight crews ifeach stewardess serves 40 passengers.Take the reference weight as gokg, the weight of flight crew (include luggage)is Ww=k*Ne+B=12×90=1080kg (3.1) The weight of passengers and luggage is W=k*N。=400×90=36000kg (3.2) Thus the total weight can be calculated as WPLC =WGREW +WR.=37080kg (3.3) 3.2 Final Weight Proportion A typical flight envelope is consisted of 12 parts,which are listed in Table 5. Table 5.Flight mission profile. Number Mission profile Weight proportion (Wi/Wi1) 1 Start and slide 0.98 2 Takeoff 0.995 3 Climb 0.98 ? Cruise 5 Descend 0.99 6 Enter and Landing 0.992 7 Slide 0.99 8 Mistake Enter 0.99 9 Climb 0.98 10 Divert 11 Descend 0.99 4
Conceptual Design of the Wide-Body PIS-413 WEIGHT ESTIMATION 4 3 Weight Estimation 3.1 Crew and Passenger Weight A designed capacity of 400 seats for the full economy class version includes 12 flight crews if each stewardess serves 40 passengers. Take the reference weight as 90kg, the weight of flight crew (include luggage) is * 12 90 1080 W k N kg CREW fc fa (3.1) The weight of passengers and luggage is * 400 90 36000 W k N kg PL p (3.2) Thus the total weight can be calculated as 37080 W W W kg PLC CREW PL (3.3) 3.2 Final Weight Proportion A typical flight envelope is consisted of 12 parts, which are listed in Table 5. Table 5. Flight mission profile. Number Mission profile Weight proportion(Wi/Wi-1) 1 Start and slide 0.98 2 Takeoff 0.995 3 Climb 0.98 4 Cruise 5 Descend 0.99 6 Enter and Landing 0.992 7 Slide 0.99 8 Mistake Enter 0.99 9 Climb 0.98 10 Divert 11 Descend 0.99
Conceptual Design of the Wide-Body PIS-413 WEIGHT ESTIMATION 12 Enter and landing 0.992 Take the cruising Mach number as 0.78,specific fuel consumption (sfc)as 0.5 kg/hr/kgf,cruising lift-drug ratio as 21.65.Then g-er'9_03465 W。200*1852*E+2 V L 1=0.9897 W W。 (3.43.5) W INAL=Π =W1 (3.6) Thus the final weight proportion is ML=0.7337 (3.7) 3.3 Fuel Weight Proportion Ma=1-ML=0.2663 (3.8) 此-此) 0.0543 (3.9) MF.USED =M EUEL MF.RES =0.212 (3.10) Where W is consuming airfuel weight,W is residual fuel weight. 3.4 Maximum Takeoff Weight Estimation If empty weight proportion is 0.52,dead fuel weight is 0.002,then Moe=0.52,Mm=0.002 (3.11) Thus the proportion of all flight crew,passengers and luggage MPic=1-MFUSED ME.RES MIE Mg 0:2117 (3.12) Thus the estimate flight take-off weight is WTo=WLc MpLc =175150kg (3.13)
Conceptual Design of the Wide-Body PIS-413 WEIGHT ESTIMATION 5 12 Enter and landing 0.992 Take the cruising Mach number as 0.78,specific fuel consumption (sfc) as 0.5 kg/hr/kgf,cruising lift-drug ratio as 21.65. Then * * 4 3 0.846 SFC D R W V L e W , 200*1852* * 10 9 0.9897 SFC D W V L e W (3.4 3.5) 12 1 1 FINAL i FINAL i TO i W W M W W (3.6) Thus the final weight proportion is 0.7337 M FINAL (3.7) 3.3 Fuel Weight Proportion 1 0.2663 M M FUEL FINAL (3.8) 6 11 , , 1 7 1 1 1 0.0543 F RES i i F RES TO i i i i W W W M W W W (3.9) , , 0.212 M M M F USED FUEL F RES (3.10) Where WF USED , is consuming airfuel weight, WF RES , is residual fuel weight. 3.4 Maximum Takeoff Weight Estimation If empty weight proportion is 0.52, dead fuel weight is 0.002, then 0.52 M OE , 0.002 MTF (3.11) Thus the proportion of all flight crew, passengers and luggage , , 1 0.2117 M M M M M PLC F USED F RES TF E (3.12) Thus the estimate flight take-off weight is / 175150 W W M kg TO PLC PLC (3.13)