(2-1) =P=PE (2-2) f=f"=∫ (2-3) fi=fi d=/y2 fi /x, P ' y P=gx. P (2-8) piy,P=rx,f (2-9) f1=f2 (2-10) Yi Yi xi (2-11) K1=y1/ (2-12) yi/y, K1=当功2 RT dv -lnZ (2-15) T,, n dP RT (2-16) i /T, P, nj RT a,=0.42748R2T2/P b=0.08664RT/P a1=27R272/64P b=RT:/8P
T = T = T = (2-1) P = P = P = (2-2) ˆ ˆ ˆ iii fff === (2-3) L i V i f ~ f ~ = (2-4) f / y P ~ ˆ i v i i V = (2-5) f / x P ~ ˆ i L i i L = (2-6) oL i i L i = ~ fi / x f (2-7) ˆ i yiP ˆ i xiP V L = (2-8) oL i i i i i V y P x f ˆ = (2-9) 2 i 1 i f ~ f ~ = (2-10) 2 i 2 i 1 i 1 i x = x (2-11) (2-12) j i i j i j ij K K x x y y = = (2-13) V L i i i i i ˆ ˆ x y K = = (2-14) t m t v i i d ln 1 ln j V Z V RT n P RT ˆ T ,V ,n − − = (2-15) dP 1 ln j 0 i t i − = P RT n V RT ˆ T ,P,n P (2-16) ( ) m m m m m m T v v b a V b RT P + − − = 0.5 ai R Tc,i Pc,i 2 2 = 0.42748 bi = 0.08664 RTc,i Pc,i ai 27R Tc,i 64Pc,i 2 2 = bi = RTc,i 8Pc,i i i i K = y x
∑y、a) bn=∑b SRK方程 RT v-b v(v+b) a1=ac·aa(r) a=0.42748R272=/P an2={+m-(/,)] m=0.48508+1.551710,-0.15613a2 a=②a) b=∑yb RT I+V Zm=PV/RT=V/v-b)-a/rTV ④= b 2 V, RTV K,=Vi_rii (2-17) p 当x1→1时,作1→1 n=f/x. (2-19)
( ) 2 m = i ai a y m = ibi b y SRK 方程: v(v b) a v b RT P + − − = ai ac,i i(T ) = • c,i c,i i ac, R T P 2 2 = 0.42748 ( ) ( ) 2 0.5 i T = 1+ mi 1- T Tc,i i mi i 2 = 0.48508 +1.55171 − 0.15613 ( ) 2 = i ai a y = ibi b y + − = 0 − + P ab V P a V P RT Vt b t t 3 2 ( ) Zm = PVt RT =Vt Vt − b − a RTVt t i m t i i RTV aa ln Z V b b ˆ ln 2 V b 1- t − − − = ˆ P f x y K V i oL i i i i i = = (2-17) 当 xi →1 时, i →1 (2-18) L i i L i i f ˆ f x ˆ = (2-19) v - dP 1 ln P 0 i i L = P RT P RT f (2-20)
f P-PP dP=hΦ+ In P P④ xPV (P-PSVRT (2-21) 当x;→0时,y;*→1 H lm fi=Hx, (t, P f=Y:*x H ∑( RTlny) RAIny T P Iny, y2 A12x1 A21x2 A21x2 A12x1 hy1=x2[A42+2(421-A12kx] hy2=x2{42+2(42-A1)x2] Iny X 4=exr-(1-减)R] Gk (, -g,)/I p(- 1+-++
( ) s i s i L s i i P P i P i L i P P ln RT v P P dP ln P RT dP v P RT v P f ln s i s i − − = + + − = − RT 0 1 f P expv (P P ) RT S S i L i i S i L i = • − (2-21) 当 xi → 0 时, i →1 (2-22) i L i 0 oL i lim i x f ~ f H x → = (2-23) i L f i Hx ˆ = (T, P 一定, xi → 0 ) (2-24) ˆ f i xiH L i = (2-25) ( ) = = c i 1 i ln i n RT E G (2-26) i ln j i RT n G T ,P,n Ei = (2-27) 2 1 2 1 2 1 2 2 1 2 2 21 2 1 2 1 1 2 1 1 1 + = + = A x A x A ln A x A x A ln ( ) ( ) 21 12 21 2 2 12 21 12 1 2 1 2 ln 1 = x2 A + 2 A − A x ln = x A + 2 A − A x − = k j j j k i j j k x k x ln i x j 1-ln exp ( ) RT v v L ij ii i L j ij = − − = + − k k kj l j l j l l i j k k ki j i j k k ki j j i j i j i G x G x G x x G G x G x ln ij = (gij − gij) RT ( ) ij ij ij G = exp − gij − gij = = + + 2 + B 1 v C RT v Pv Z (2-28)
P =1+Bp+Cp ln=2∑y:B1 (2-30) RT y: Bii-Inz (2-31) B=∑∑,,B (2-32) (2-33) ∑yP ∑yT K yy,P gi ④P (2-35) RT exp RT RT>>v(P-PS) K1=P5/ (2-36) Vi K=lip P ni pix Vi (2-39) P5④ P K P exp 2-40)
= = 1+ BP + CP 2 + RT Pv Z (2-29) RT P ˆ B = − = C j 1 lni 2 y iB ij (2-30) = = − C j 1 i i ij ln 2 ln ˆ y B Z v (2-31) = = = c i 1 c i 1 B yi yj Bij (2-32) RT v Pv Z B = = 1+ (2-33) = = c i 1 i ci c i 1 i ci 2 y T y P T P (2-34) ( ) − = = RT S i L i V i S i S i i i i i exp V P p ˆ P P x y K (2-35) ( ) exp 1 S i L i − RT V P p ( ) S P pi RT v L i − K P P S i = i (2-36) i S i i x p p y = (2-37) p p K S i i i = (2-38) p p x y i S i i i = (2-39) ( ) − = RT S i L i V i S i S i i exp V P p ˆ P P K (2-40)
K,=fl/f (2-41) K Pd「-p (2-43) ①P RT 1=K1x1(=1,2…c ∑y xi K:=f(P, T, x, y) lnk1=A1-B1/(+C1) lnk1=A1-B1/(T+18-0.197) (2-49) K 设T一→>由P下K图查K一∑kx-1m)≤→一结束 调整T
V i L i i K = f f (2-41) L i i L i f x f ~ = (2-42) ( ) − = RT S i L i V i S i S i i i exp V P p P P K (2-43) yi = Ki xi (i =1,2, c) (2-44) = = c i 1 yi 1 (2-45) = = c i 1 xi 1 (2-46) Ki = f(P,T,x, y) (2-47) lnKi = Ai − Bi (T +Ci ) (2-48) lnKi = Ai − Bi (T +18 −0.19Tb ) (2-49) = = c i 1 Ki xi 1 (2-50) ( ) -1 0 c i 1 i i = f T = K x = (2-51) 设 T ⎯给定P ⎯→ 由 P-T-K 图查 Ki → = c i 1 i i K x → ︳ f(T) ︱≤ε ⎯⎯Y→ i x T →结束 N 调整 T i K i i y = K • • x (2-52)
∑K1x1) G(1)=1n∑1x1 fP)=∑Kx1-1=0 >PS P=∑yPx (2-58) f()=∑(/K)-1.0=0 (2-60) f(P)=∑(y/K)-1.0=0 (2-61) 设T->由PK图查K→∑(y/K →结束 xi 调整T
= i i K 1 x K (2-53) = + = C i 1 (K) i i (K) (K 1) K K ( K x ) K K ) (2-54) = = = C i 1 G(1 T) ln K ix i 0 (2-55) ( ) -1 0 c i 1 i i = f P = K x = (2-56) i c i 1 S 泡 i P P x = = (2-57) i c i 1 S 泡 i P P x i = = (2-58) y Ki .0 = = c i 1 ( i ) 1 (2-59) ( ) ( )-1. 0 c i 1 i = f T = y Ki 0 = (2-60) ( ) ( )-1. 0 c i 1 i = f P = y Ki 0 = (2-61) 设 T ⎯给定P ⎯→ 由 P-T-K 图查 Ki → = c i 1 ( yi Ki)→ ︳ f(T) ︱≤ε ⎯⎯Y→ i x T →结束 N 调整 T
T 1+∑(y/K) OK B y K:(r()+C1) 1,2, F=L+y FHE+O=VH+lH -65) xi L+vK (2-66) F-v+VK y:=1+y(K;-1) (2-68) 1+y(K:-1) K ∑,6-12n=0 (K1 (K+1) 四Jay
( ) ( ) + − + = + − + = + + 2 i i i i i i 2 i i ( 1) ( ) 1 ( i ) ( ) 1 ( ) K T C B y y K T T K K y K T T K K K i K i y (2-62) Fzi = Lxi +Vyi i =1,2,c (2-63) F = L +V (2-64) FHF +Q =VHV + LHL (2-65) i i i L VK Fz x + = i i i F V VK Fz x − + = (2-66) =V F ( K ) z x 1 i 1 i i + − = (2-67) ( K ) K z y 1 i 1 i i i + − = (2-68) 1.0 1 1 c i 1 i i = + − = ( K ) z (2-69) 1.0 1 1 c i 1 i i i = + − = ( K ) K z (2-70) 0 1 1 ( 1) ( ) c i 1 i i i = + − − = = ( K ) K z f (2-71) ( ) ( ) ( ) ( ) d d - k k ( 1) ( ) f K K f = + (2-72)
df (K1-1 p+0(k1-1 (2-73) H y;H,( T, P) ∑x:H1(T, y (2-76) TD-TB K (K) K (7 G(T)=VH,+LH,-FH G()=H1+(1-y)H1-H (K+1) dG(r())dT() (2-78 dG((n-v dhy+LL=vCpy +LCPl (2-79) △T=d·△T计算 ()=S(K1-1)2y (2-80) f1+y(K1-1) G(P)=1+(1-y)H1-H (2-81)
( ) ( ) ( ) = + − − = − c i 1 2 i k i 2 i k 1 ( 1) ( 1) d d K K z f (2-73) = = c i 1 HV yiHvi(T ,P) (2-74) = = c i 1 HL xiHLi(T ,P) (2-75) D B B T T T T − − = (2-76) ( ) ( ) ( ) ( ) ( ) ( ) K K K 1 ref ref 1 d f T K T K T + = + ( ) G T =VHV + LHL − FHF ( ) ( ) G T =HV + 1− HL − HF (2-77) ( ) ( ) ( ) ( ) ( ) ( ) K (K ) K K K dG T dT G T T = T − +1 (2-78) ( ) ( ) ( ) PV PL V L K K VC LC dT dH L dT dH V dT dG T = + = + (2-79) ︱ (K ) (K) T =T +1 ︱≤ε △T=d·△T 计算 = + − − = c i 1 i i i 1 1 ( 1) ( ) ( K ) K z f T (2-80) ( ) ( ) G =HV + 1− HL − HF (2-81)
(K) H-H y(=y1)+d (2-83) (3-1) Nv=f+1=(c-1+2)=c+2 R+1 (3-3a) -6 (3-3b) 2 (3-5) x)-(x) lga N lg
( ) (K ) V L K F L H H H H − − = +1 (2-82) ( ) ( ) ( ) ( ) K K K = + d − + 计 1 (2-83) Ni = Nv − Nc (3-1) f = c − + 2 Nv = f +1= (c −1+ 2) = c + 2 = + − i N N N N u r c e i u i (3-2) ( ) = + − m 1 i i i,D m R x (3-3a) = − 1- q i i i,F x (3-3b) 1 D 1 1 = = B A B A B A x x x x y y (3-4) A,2 A,1 DxA,D V2 y = L1 x − (3-5) 1 = B A B A x x y y 2 (3-6) B W A N B A x x x x = • • • 1 2 3 N-1 D (3-7) AB m lg lg = B W A B A x x x x N D (3-8) 3 D W F 平均 = • • (3-9) D W 平均 = • (3-10) 平均 lg lg m = A w B d w d N (3-11)
d 1-PLKD LK lg Y=1-exp (1+54.4X)(X 16) 11+117.2XX Y=0.75-0.75X0.566 HK. D AD N. Ig 3-19) KI pir, K2 para A1(x2-x1)+x2(x2-2x42-A2) (3-21) +x[A1、-A2+2x1(41-A2)-x,(42-A2)-C(x2-x 14n=410-x,)0-2x)+x、(4,-) (3-22) (3-23) A2(1-2x) (3-24) P A2(-2x) P
( ) Nm i,r = r r i i w d w d (3-12) ( ) LK LK 1 LK d f w f LK,D LK ; = −LK,D = • (3-13) ( ) H HK 1 H HK d f w f HK HK,W K ; = − K,W = • (3-14) ( )( ) N W LK - K LK,D K, LK,D HK,W H H m lg 1 1 lg − − • = (3-15) ( )( ) ( ) + + − = − X X X X Y 11 117.2 1 54.4 1 exp 1 (3-16) 0.5668 Y = 0.75 − 0.75X (3-17) 0.206 2 HK,D LK,W LK,F HK,F • = D W x x z z N N S R (3-18) m AB B,W B,D A,W A,D lg lg N lg x x x x − = (3-19) 2 s 2 1 s 1 2 1 p p K K = = (3-20) ( ) ( )( ) ( ) ( ) ( ) s 1 s s 2 1 s 1 s 2 2 s s 2 2 1 2 1 2 1 2 2 1 1 2 2 1 2 1 2 ln 2 x A A x A A x A A C x x A x x x x x A A s s + − + − − − − − = − + − − (3-21) ( )( ) ( ) s 2s s = A − x − x + x A − A 1 s 1s 2 1 ln 12 1 1 2 (3-22) ( )( ) ( ) s 2s T 3 s 2 s 1 s A x x x A A P P a + − − + − ln = ln 12 1 1 2 1 s 1 s (3-23) ( ) 1 2 1 ln = A − 2x 12 1 (3-24) ( ) ln ln 2 1 A x P P a s 2 s 1 + − = 12 1 (3-25) s 2 s 1 P P