钢结构基础 (工程管理专业) 西安建筑科技大
钢结构基础 西安建筑科技大学 (工程管理专业)
1概率极限状态设计法和疲劳设计的容许应力法 1.1结构的极限状态 当整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求时,此 特定状态为该功能的极限状态。分为承载能力极限状态和正常使用极限状态 承载能力极限状态对应于结构或构件达到最大承载能力或出现不适于继续承载的变形 率 极 正常使用极限状态对应于结构或结构构件达到正常使用或耐久性能的某项规定限值 状 结构的工作性能可用结构的功能函数Z来描述,设计结构时可取荷载效应S和结构抗力R两个基 态本随机变量来表达结构的功能函数,即 设 计 Z-g(R, S)=R-S (1-1) 和 显然,Z是随机变量,有以下三种情况 疲2>0结构处于可靠状态 议2=0结构达到极限状态; 什z<0结构处于失效状态 客可见,结构的极限状态是结构由可靠转变为失效的临界状态 由于R和S受到许多随机性因素影响而具有不确定性,2不是必然性的事件。因此科学的设计 /万法是以概率为基础来度量结构的可靠性 12可靠度 按照概率极限状态设计法,结构的可靠度定义为结构在规定的时间内,规定的条件下,完 成预定功能的概率。“完成预定功能”指对某项规定功能而言结构不失效。结构在规定的设计 使用年限内应满足的功能有:
1 概率极限状态设计法和疲劳设计的容许应力法 1 概 率 极 限 状 态 设 计 法 和 疲 劳 设 计 的 容 许 应 力 法 1.1 结构的极限状态 当整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求时,此 特定状态为该功能的极限状态。分为承载能力极限状态和正常使用极限状态。 承载能力极限状态 对应于结构或构件达到最大承载能力或出现不适于继续承载的变形 正常使用极限状态 对应于结构或结构构件达到正常使用或耐久性能的某项规定限值 结构的工作性能可用结构的功能函数Z来描述,设计结构时可取荷载效应S和结构抗力R两个基 本随机变量来表达结构的功能函数,即 Z=g(R,S)=R-S (1-1) 显然,Z是随机变量,有以下三种情况: Z>0 结构处于可靠状态; Z=0 结构达到极限状态; Z<0 结构处于失效状态。 可见,结构的极限状态是结构由可靠转变为失效的临界状态。 由于R和S受到许多随机性因素影响而具有不确定性,Z≥0不是必然性的事件。因此科学的设计 方法是以概率为基础来度量结构的可靠性。 1.2 可靠度 按照概率极限状态设计法,结构的可靠度定义为结构在规定的时间内,规定的条件下,完 成预定功能的概率。“完成预定功能”指对某项规定功能而言结构不失效。结构在规定的设计 使用年限内应满足的功能有:
(1)在正常施工和正常使用时,能承受可能出现的各种作用; (2)在正常使用时具有良好的工作性能; (3)在正常维护下具有足够的耐久性 (4)在设计规定的偶然事件发生时及发生后,仍能保持必需的整体稳定性。 规定的设计使用年限(设计基准期)是指设计规定的结构或结构构件不需进行大修即可按其预定 目使用的年限。大陆规范规定建筑结构的设计基准期为50年 若以P表示结构的可靠度,则有 P=P(220) (1-2) 概車极限状态设计法和疲劳设计的容许应力法 记P为结构的失效概率,则有 P=P(Z<0) (1-3) 显然 P:1-Pt (1-4) 因此结构可靠度的计算可转换为失效概率的计算。可靠的结构设计指的是使失效概率小到可以 接受程度的设计,绝对可靠的结构(失效概率等于零)是不存在的。由于与Z有关的多种影响因素 都是不确定的,其概率分布很难求得,目前只能用近似概率设计方法,同时采用可靠指标表示失效 概率 13可靠指标 为了使结构达到安全可靠与经济上的最佳平衡,必须选择一个结构的最优失效概率或目标可靠 指标。可采用“校准法”求得。即通过对原有规范作反演分析,找出隐含在现有工程中相应的可靠 指标值,经过综合分析,确定设计规范采用的目标可靠指标值。《建筑结构设计统一标准》规定结 构构件可靠指标不应小于表1-1中的规定。钢结构连接的承载能力极限状态经常是强度破坏而不是屈 服,可靠指标应比构件为高,一般推荐用4.5。1
(1) 在正常施工和正常使用时,能承受可能出现的各种作用; (2) 在正常使用时具有良好的工作性能; (3) 在正常维护下具有足够的耐久性; (4) 在设计规定的偶然事件发生时及发生后,仍能保持必需的整体稳定性。 规定的设计使用年限(设计基准期)是指设计规定的结构或结构构件不需进行大修即可按其预定 目使用的年限。大陆规范规定建筑结构的设计基准期为50年。 若以Pr表示结构的可靠度,则有 Pr=P(Z≥0) (1-2) 记Pf为结构的失效概率,则有 Pf=P(Z<0) (1-3) 显然 Pr= 1-Pf (1-4) 因此结构可靠度的计算可转换为失效概率的计算。可靠的结构设计指的是使失效概率小到可以 接受程度的设计,绝对可靠的结构(失效概率等于零)是不存在的。由于与Z有关的多种影响因素 都是不确定的,其概率分布很难求得,目前只能用近似概率设计方法,同时采用可靠指标表示失效 概率。 1.3 可靠指标 为了使结构达到安全可靠与经济上的最佳平衡,必须选择一个结构的最优失效概率或目标可靠 指标。可采用“校准法”求得。即通过对原有规范作反演分析,找出隐含在现有工程中相应的可靠 指标值,经过综合分析,确定设计规范采用的目标可靠指标值。《建筑结构设计统一标准》规定结 构构件可靠指标不应小于表1-1中的规定。钢结构连接的承载能力极限状态经常是强度破坏而不是屈 服,可靠指标应比构件为高,一般推荐用4.5。表1-1 1 概 率 极 限 状 态 设 计 法 和 疲 劳 设 计 的 容 许 应 力 法
14极限状态设计表达式 除疲劳计算外,钢结构设计规范采用以概率理论为基础的极限状态设计方法,用分项系数的设计 表达式进行计算 (1)对于承载能力极限状态,结构构件应采用荷载效应的基本组合和偶然组合进行设计 基本组合按下列极限状态设计表达式中最不利值确定 由可变荷载效应控制的组合: y0(GSa+yaSn+∑ Yoys)≤R(1-5) 概車极限状态设计法和疲劳设计的容许应力 由永久荷载效应控制的组合: Yo(Gs Yoy ≤R ,按下列规定采用:对安全等级为一级或设计使用年限为100年及以上的 结构构件,不应小于1.1;对安全等级为二级或设计使用年限为50年的结构构件,不应小于 1.0;对安全等级为三级或设计使用年限为5年的结构构件,不应小于0.9 察%—永久荷载分项系数,应按下列规定采用:当永久荷载效应对结构构件的承载能力不利时,对 由可变荷载效应控制的组合应取1.2,对由永久荷载效应控制的组合应取1.35;当永久荷载 效应对结构构件的承载能力有利时,一般情况下取1.0; op,7第1个和第个可变荷载分项系数,应按下列规定采用:当可变荷载效应对结构构件的承 载能力不利时,在一般情况下应取1.4,对标准值大于40kNm2的工业房屋楼面结构的活荷载 取1.3;当可变荷载效应对结构构件的承载能力有利时,应取为0 S——永久荷载标准值的效应
1.4 极限状态设计表达式 除疲劳计算外,钢结构设计规范采用以概率理论为基础的极限状态设计方法,用分项系数的设计 表达式进行计算 (1) 对于承载能力极限状态,结构构件应采用荷载效应的基本组合和偶然组合进行设计 基本组合 按下列极限状态设计表达式中最不利值确定 由可变荷载效应控制的组合: (1-5) 由永久荷载效应控制的组合: (1-6) 0——结构重要性系数,按下列规定采用:对安全等级为一级或设计使用年限为100年及以上的 结构构件,不应小于1.1;对安全等级为二级或设计使用年限为50年的结构构件,不应小于 1.0;对安全等级为三级或设计使用年限为5年的结构构件,不应小于0.9; G——永久荷载分项系数,应按下列规定采用:当永久荷载效应对结构构件的承载能力不利时,对 由可变荷载效应控制的组合应取1.2,对由永久荷载效应控制的组合应取1.35;当永久荷载 效应对结构构件的承载能力有利时,一般情况下取1.0; Q1, Qi——第1个和第i个可变荷载分项系数,应按下列规定采用:当可变荷载效应对结构构件的承 载能力不利时,在一般情况下应取1.4,对标准值大于4.0kN/m2的工业房屋楼面结构的活荷载 取1.3;当可变荷载效应对结构构件的承载能力有利时,应取为0; S——永久荷载标准值的效应; 1 概 率 极 限 状 态 设 计 法 和 疲 劳 设 计 的 容 许 应 力 法 S S S R n i G Gk Q Q k Qi ci Qi k + + = ( ) 2 0 1 1 S S R n i G Gk Qi ci Qik + = ( ) 1 0
Sok在基本组合中起控制作用的第1个可变荷载标准值的效应 第个可变荷载标准值的效应 a—第个可变荷载的组合值系数,其值不应大于1 R—结构构件的抗力设计值,RR,R为结构构件抗力标准值,为抗力分项系数,对于Q235 钢,%2=1087;对于Q345、Q390和Q420钢,=1.11。 率 对于一般排架、框架结构,可以采用简化设计表达式: 由可变荷载效应控制的组合: 态 设 y0(Sa2+v∑ Yo s)≤R 和v—简化设计表达式中采用的荷载组合系数,一般情况下可取v=09,当只有一个可变 疲 劳 荷载时,取v=1.0 设 由永久荷载效应控制的组合仍按式(1-6)计算 的 偶然组合 许 对于偶然组合,极限状态设计表达式宜按下列原则确定:偶然作用的代表值不乘以分项系数;与 力偶然作用同时出现的可变荷载,应根据观测资料和工作经验采用适当的代表值。 (2)对于正常使用极限状态,结构构件根据不同设计目的,分别选用荷载效应的标准组合、频遇组合 和准永久组合进行设计,使变形、裂缝等荷载效应的设计值符合下式的要求: Sa≤C (1-8) S变形、裂缝等荷载效应的设计值 C设计对变形、裂缝等规定的相应限值
SQ1k——在基本组合中起控制作用的第1个可变荷载标准值的效应; SQik——第i个可变荷载标准值的效应; ci——第i个可变荷载的组合值系数,其值不应大于1; R——结构构件的抗力设计值,R=Rk /R,Rk为结构构件抗力标准值,R为抗力分项系数,对于Q235 钢,R=1.087;对于Q345、Q390和Q420钢,R=1.111。 对于一般排架、框架结构,可以采用简化设计表达式: 由可变荷载效应控制的组合: (1-7) ——简化设计表达式中采用的荷载组合系数,一般情况下可取=0.9,当只有一个可变 荷载时,取=1.0。 由永久荷载效应控制的组合仍按式(1-6)计算。 偶然组合 对于偶然组合,极限状态设计表达式宜按下列原则确定:偶然作用的代表值不乘以分项系数;与 偶然作用同时出现的可变荷载,应根据观测资料和工作经验采用适当的代表值。 (2) 对于正常使用极限状态,结构构件根据不同设计目的,分别选用荷载效应的标准组合、频遇组合 和准永久组合进行设计,使变形、裂缝等荷载效应的设计值符合下式的要求: Sd≤C (1-8) Sd——变形、裂缝等荷载效应的设计值; C——设计对变形、裂缝等规定的相应限值。 1 概 率 极 限 状 态 设 计 法 和 疲 劳 设 计 的 容 许 应 力 法 S S R n i G Gk Qi Qi k + = ( ) 1 0
钢结构的正常使用极限状态只涉及变形验算,仅需考虑荷载的标准组合 Sa=Sa+Sa+∑vS (1-9) 15钢结构的疲劳计算 概車极限状态设计法和疲劳设计的容许应力法 疲劳断裂的概念 钢结构的疲劳断裂是裂纹在连续重复荷载作 用下不断扩展以至断裂的脆性破坏。疲劳破坏经 历三个阶段:裂纹的形成,裂纹的缓慢扩展和最 min 后迅速断裂 与疲劳破坏有关的几个概念 (a) 应力集中 应力循环特征连续重复荷载之下应力从最大到最 max 小重复一周叫做一个循环。应力循环特征常用应 力比来表示,拉应力取正值,压应力取负值 (b) 应力幅应力幅表示应力变化的幅度,用 图1-1疲劳应力谱 △a=amx-a1表示,应力幅总是正值
钢结构的正常使用极限状态只涉及变形验算,仅需考虑荷载的标准组合: (1-9) 1 概 率 极 限 状 态 设 计 法 和 疲 劳 设 计 的 容 许 应 力 法 = = + + n i d Gk Q k ci Qik S S S S 2 1 1.5 钢结构的疲劳计算 疲劳断裂的概念 钢结构的疲劳断裂是裂纹在连续重复荷载作 用下不断扩展以至断裂的脆性破坏。疲劳破坏经 历三个阶段:裂纹的形成,裂纹的缓慢扩展和最 后迅速断裂。 与疲劳破坏有关的几个概念 应力集中 应力循环特征 连续重复荷载之下应力从最大到最 小重复一周叫做一个循环。应力循环特征常用应 力比来表示,拉应力取正值,压应力取负值。 应力幅 应力幅表示应力变化的幅度,用 △ =max- min表示,应力幅总是正值。 σmax σmin t σ σ σmax σmin t (b) (a) 图 1-1 疲劳应力谱
疲劳寿命(致损循环次数)疲劳寿命指在连续反复荷载作用下应力的循环次数,一般用n表示。 (1)疲劳曲线(△an曲线) 概車极限状态设计法和疲劳设计的容许应力法 图1-240-n曲线 当采用双对数坐标时,疲劳曲线呈直线关系[图1-2(b)]。其方程为 logn=b-mlog△a 考虑到试验点的离散性,需要有一定的概率保证,则方程改为 n=b-mlog△a-2o (1-11) 式中b--n轴上的截距 m—一直线对纵坐标的斜率(绝对值); 标准差,根据试验数据由统计理论公式得出,它表示gn的离散程度。 若呈正态分布,公式(1-1))保证率是977%;若呈t分布,则约为95%
1 概 率 极 限 状 态 设 计 法 和 疲 劳 设 计 的 容 许 应 力 法 疲劳寿命(致损循环次数) 疲劳寿命指在连续反复荷载作用下应力的循环次数,一般用n表示。 (1)疲劳曲线(—n曲线) Δσ n logΔσ 图 1-2 Δσ-n 曲线 logn 2σn 2σn (a) (b) 当采用双对数坐标时,疲 劳曲 线呈直线关 系[图 1-2(b)]。其方程为 log n = b − m log (1-10) 考虑到试验点的离散性,需要有一定的概率保证,则方程改为 m n log n = b − log − 2 (1-11) 式 中 b — —n 轴上的截距; m — —直 线 对 纵 坐 标 的 斜 率 ( 绝 对 值 ); n — —标准差,根据试验数据由统计理论公式得出,它表示log n 的离散程度。 若 log n 呈正态分布,公式( (11--11) 1 2)保证率是 97.7%;若呈 t 分布,则约为 95%
(2)疲劳计算及容许应力幅 般钢结构都是按照概率极限状态进行设计的,但对疲劳部分规范规定按容 许应力原则进行验算。这是由于现阶段对疲劳裂缝的形成、扩展以至断裂这一过 程的极限状态定义,以及有关影响因素研究不足的缘故 应力幅值由重复作用的可变荷载产生,所以疲劳验算按可变荷载标准值进 概車极限状态设计法和疲劳设计的容许应力法 行。由于验算方法以试验为依据,而疲劳试验中已包含了动力的影响,故计算荷 载时不再乘以吊车动力系数 常幅疲劳按下式进行验算 式中△一一对焊接部位为应力幅A=0m-0mn;对非焊接结构为折算应力 幅△σ 0.70m,应力以拉为正,压为负 常幅疲劳的容许应力幅,按构件和连接的类别以及预期的循环次 数由公式(1-14)计算 由式(1-11)可得 106-2c △σ C
1概率极限状态设计法和疲劳设计的容许应力法 (2)疲劳计算及容许应力幅 一般钢结构都是按照概率极限状态进行设 计的,但对疲劳部分规范规定按容 许应力原则进行验算。这是由于现阶段对疲劳裂缝的形成、扩展以至断裂这一过 程的极限状态定义,以及有关影响因素研究不足的缘故。 应力幅值由重复作用的可变荷载产生,所以疲劳验算按可变荷载标准值进 行 。由于验算方法以试验为依据,而疲劳试验中已包含了动力 的影响,故计算荷 载时不再乘以吊车动力系数。 常幅疲劳按下式进行验算 (1-12) 式 中 — —对焊接部 位为应力幅 = max − min ;对非焊接结 构 为 折算应力 幅 max 7 min = − 0. ,应力以拉为正,压为负; — —常幅疲劳的容许应力幅,按构件和连接的类别以及预期的循环次 数由公式(1-14)计算。 由 式(1-11)可 得 m m b nC n n 1 1 2 10 = = − (1-13)
取此Δσ作为容许应力幅,并将m调成整数,记为B 式中 应力循环次数 概車极限状态设计法和疲劳设计的容许应力法 C、β一系数,根据构件和连接类别按表1-3采用。 系数C、β值 表1-3 构件和连 接类别 4 6 1940×861×3.26×2.18×1.47×0.96×0.65×0.41× C 由式(1-14)可知,只要确定了系数C和β,就可根据设计基准期内可能出现的 应力循环次数n确定容许应力幅A可],或根据设计应力幅水平预估应力循环次数 如为全压应力循环,不出现拉应力,则对这一部位不必进行疲劳计算
1概率极限状态设计法和疲劳设计的容许应力法 取 此 作为容许应力幅,并 将 m 调成整数,记 为 1 = nC (1-14) 式 中 n— —应力循环次数; C、— —系数,根据构件和连接类别 按 表 1-3 采 用。 系 数 C、值 表 1-3 构件和连 接类别 1 2 3 4 5 6 7 8 C 1940× 1 012 861 × 1 012 3.26 × 1 01 2 2.18 × 1 01 2 1.47 × 1 01 2 0.96 × 1 01 2 0.65× 1 01 2 0.41× 1 01 2 4 4 3 3 3 3 3 3 由 式( 1-14)可知,只要确定了系数 C 和 ,就可根据设计基准期内可能出现的 应力循环次数 n 确定容许应力 幅 ,或根据设计应力幅水平预估应力循环次数 n。 如为全压应力循环,不出现拉应力,则对这一部位不必进行疲劳计算
(3)变幅疲劳 大部分结构实际所承受的循环应力都不是常幅的。以吊车梁为例,吊车运行 时并不总是满载,小车在吊车桥上所处的位置也在变化,吊车的运行速度及吊车 的维修情况也经常不同。因此吊车梁每次的荷载循环都不尽相同。吊车梁实际处 极 于欠载状态的变幅疲劳下。对于重级工作制吊车梁和重级、中级工作制的吊车桁 状 架,规范规定其疲劳可作为常幅疲劳按下式计算 态 设 a△a≤[△aade (1-15) 计 式中A一变幅疲劳的最大应力幅; 和 疲 [A]--循环次数n=2×10°次的容许应力幅,由式(1-14)计算 劳 设 a—中、重级吊车荷载折算成n=2×10°时的欠载效应等效系数,根据对大 计 陆吊车荷载谱的调查统计结果,重级工作制硬勾吊车为1.0,重级工作制软勾吊 容 车为0.8,中级工作制吊车为0.5。 应 法
1概率极限状态设计法和疲劳设计的容许应力法 (3)变幅疲劳 大部分结构实际所承受的循环应力都不是常幅的。以吊车梁为例,吊车运行 时并不总是满载,小车在吊车桥上所处的位置也在变化,吊车的运行速度及吊车 的维修情况也经常不同。因此吊车梁每次的荷载循环都不尽相同。吊车梁实际处 于欠载状态的变幅疲劳下。对于重级工作制吊车梁和重级、中级工作制的吊车桁 架,规范规定其疲劳可作为常幅疲劳按下式计算 6 f 21 0 (1-15) 式 中 — —变幅疲劳的最大应力幅; 6 210 — —循环次数 6 n = 210 次的容许应力幅,由式(1-14)计算; f— —中、重级吊车荷载折算成 6 n = 210 时的欠载效应等效系数,根据对国 内吊车荷载谱的调查统计结果,重级工作制硬勾吊车为 1.0,重级工作制软勾吊 车 为 0.8,中级工作制吊车为 0.5。 大 陆