点击切换搜索课件文库搜索结果(330)
文档格式:PPT 文档大小:92KB 文档页数:4
一、逆幂法分析 设n阶实方阵A有n个线性无关的特征向量u12…n 相应的特征值分别为,2…n,并按其绝对值的大小排列 即 则由A1=u,可得Au1=u,即A的逆矩阵A的特征值为
文档格式:PPT 文档大小:861KB 文档页数:41
n个列向量是一个标准正交基AA=1A=A-1 酉相似下的标准形 Schur定理:任一复数方阵均可酉相似于上三角矩阵
文档格式:PPT 文档大小:572.5KB 文档页数:52
Jordan标准形( Cont i nue) 化方阵A为 Jordan标准形特征向量法设A∈C
文档格式:DOC 文档大小:57KB 文档页数:2
3.2.5行列式的按任意列展开和特殊矩阵的行列式 1、行列式的按任意行(列)展开 定义命A=(-1)M,称为a的代数余子式
文档格式:PPT 文档大小:163KB 文档页数:18
如上面的讨论中看到的,一般的方阵不一定可对角化, 但对于在应用中常常遇到的实对称矩阵(满足A'=A 的实矩阵),不仅一定可以对角化,而且解决起来 要简便得多,这是由实对称矩阵的特征值和特征向 量的特性所决定的。 定理1实对称矩阵的特征值为实数。 设复数为实对称矩阵A的特征值,复向量x为对应的 特征向量,即Ax=λx,x≠0
文档格式:PPT 文档大小:280KB 文档页数:15
例3设n阶方阵A的伴随矩阵为A*,证明: (1)若A=0,则A=0 (2)a=ain-1 证明:由伴随矩阵的定义显然有 AA*=AA=AIEn, 两边取行列式即得 JAllAdet()=a, 故当A不等于0时,(2)是显然的。而 只要我们证明了(1),则(2)对于A|=0 的矩阵A也是成立的。下面我们证明(1)
文档格式:PPT 文档大小:215KB 文档页数:26
称为m行n列矩阵,简称为mxn矩阵。这mxn个 数称为矩阵A的元素,a叫做矩阵A的第行第列 元素。元素是实数的矩阵叫做实矩阵,元素是复 数的矩阵叫做复矩阵。 本教程中的矩阵除特别说明外,都指实矩阵。 通常用大写的拉丁字母A、B、C等表示矩阵。有 时为了指明矩阵的第行第列元素为a,可将A记 作A=(a)mn或A=(an),也可将m×n矩阵A记为 mxn° 当A的行数与列数相等时,称A为n阶方阵 或n阶矩阵。显然,一阶矩阵就是一个数
文档格式:PPT 文档大小:625KB 文档页数:27
本节进一步讨论方阵的内在性质,加深对矩阵的认识和理解,以便更好地使用矩阵解决线性代数中的问题
文档格式:PPT 文档大小:659KB 文档页数:92
§1 矩阵的概念 §2 矩阵的运算 §3 方阵与分块矩阵 §4 矩阵的初等变换与矩阵的秩 §5 可逆矩阵
文档格式:DOC 文档大小:408KB 文档页数:9
5.1矩阵的特征值与特征向量 定义:对于n阶方阵A,若有数λ和向量x≠0满足Ax=x,称λ为A 的 特征值,称x为A的属于特征值λ的特征向量 特征方程:Ax=λx(A-E)x=0或者(ae-A)x=0 (A-E)x=0有非零解det(-E)=0
首页上页89101112131415下页末页
热门关键字
搜索一下,找到相关课件或文库资源 330 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有