点击切换搜索课件文库搜索结果(497)
文档格式:PDF 文档大小:639.83KB 文档页数:28
投影矩阵与Moore-Penrose逆  投影算子与投影矩阵  正交投影算子与正交投影矩阵  投影矩阵与广义逆矩阵
文档格式:PDF 文档大小:1.72MB 文档页数:35
 哈密顿算子  正交曲线坐标系
文档格式:PPT 文档大小:2.47MB 文档页数:159
第一节 方阵的特征值与特征向量 一、特征值与特征向量的概念 三、特征值与特征向量的性质 二、特征值与特征向量的求法 四、小节、思考题 第二节 相似矩阵 一、相似矩阵与相似变换的概念 二、相似矩阵与相似变换的性质 三、利用相似变换将方阵对角化 四、小结、思考题 第三节 实对称矩阵的对角化 一、实对称矩阵的性质 对角化的方法 二、利用正交矩阵将实对称矩阵 三、小结、思考题 第四节 二次型及其标准形 一、二次型及其标准形的概念 二、二次型的表示方法 三、二次型的矩阵及秩 四、化二次型为标准形的正交变换法 六、小结、思考题 五、化二次型为标准形的配方法 第五节 正定二次型与正定矩阵 一、惯性定理 二、正(负)定二次型的概念 三、正(负)定二次型的判别 四、小节、思考题
文档格式:PPT 文档大小:1.19MB 文档页数:33
一、教学目标 1.熟练掌握向量的内积,夹角,长度,距离概念; 2.掌握 Schwarz不等式及应用; 3.理解标准正交基的概念,求法及应用,了解子空间正交
文档格式:PDF 文档大小:240.76KB 文档页数:13
在第一章中我们已介绍了内积空间的公理系统并给出过内积空间 的例子.内积空间是一种特殊的线性赋范空间,因此对于一般赋范空 间成立的那些结论对于内积空间也是适用的.但由于内积空间具有 “内积”这种结构,使得它有着比一般赋范空间更为特殊的性质.本章 将叙述这些特殊性质:正交基的存在性、正交投影以及空间上线性泛 函和算子的特殊表现形式. Hil ber t空间的理论已广泛地应用于许多 学科和学科分支中去
文档格式:DOC 文档大小:75KB 文档页数:1
命题正交矩阵的特征多项式的根的绝对值等于1 证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0 在C内有非零解向量
文档格式:PPT 文档大小:2.47MB 文档页数:159
第一节 方阵的特征值与特征向量 第二节 相似矩阵 一、相似矩阵与相似变换的概念 二、相似矩阵与相似变换的性质 三、利用相似变换将方阵对角化 第三节 实对称矩阵的对角化 一、实对称矩阵的性质 对角化的方法 二、利用正交矩阵将实对称矩阵 第四节 二次型及其标准形 一、二次型及其标准形的概念 二、二次型的表示方法 三、二次型的矩阵及秩 四、化二次型为标准形的正交变换法 第五节 正定二次型与正定矩阵 一、惯性定理 二、正(负)定二次型的概念 三、正(负)定二次型的判别
文档格式:DOC 文档大小:287.5KB 文档页数:4
3.1.1平行四边形的有向面积和平行六面体的有向体积具有的三条性质 在解析几何中已证明,给定二维向量空间中的单位正交标架,设向量a,B的坐标分别 为(a1,a2)和(b,b2),则由向量a,B张成的平行四边形的有向面积为ab2-a2b,这里记 为;给定三维空间内右手单位正交标架,设向量a,B,y的坐标分别为(a1,a2,a3)
文档格式:DOC 文档大小:260.5KB 文档页数:6
5.3实对称矩阵的相似矩阵 目的:对于实对称矩阵A(A=A),求正交矩阵Q(QQ=E), 使得QAQ=A.此时,称A正交相似于对角矩阵A 1.实对称矩阵的特征值与特征向量的性质 定理6a=A→∈R. 证设Ax=x(x≠0),x=(51,52,5n),则有
文档格式:PPT 文档大小:549KB 文档页数:36
第七章二次型与二次曲面 第一节二次型及其矩阵表示 第二节正交变换 第三节用正交变换化次型为标准形 第四节用配方法化次型为标准形 第五节,正定二次型
首页上页1011121314151617下页末页
热门关键字
搜索一下,找到相关课件或文库资源 497 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有