点击切换搜索课件文库搜索结果(156)
文档格式:PDF 文档大小:1.26MB 文档页数:10
随着物联网技术的发展,前端传感器的使用使得低合金钢的海水腐蚀监测成为了现实,从而获得了大量的腐蚀数据。针对传统均值法处理双率腐蚀数据带来的数据信息损失以及建模精度下降问题,提出了一种基于综合指标值(CIV)和改进相关向量回归(IRVR)的双率腐蚀数据处理和建模算法(CIV-IRVR)。首先,通过构建CIV表征输入数据的综合影响并采用天牛须搜索(BAS)算法对其参数进行寻优;然后,建立最优CIV序列与输出数据间的线性回归模型将双率数据转化为建模用的单率数据,能够更多地保留原始数据信息;最后,给出了一种BAS算法优化的具有组合核函数的改进相关向量回归建模方法(IRVR),并建立了针对低合金钢海水腐蚀双率数据的CIV-IRVR预测模型。结果表明:相比于均值方法处理双率腐蚀数据,所提方法将建模样本数量由196提升到了1834;相比于海水腐蚀建模领域常用的人工神经网络(ANN)和支持向量回归(SVR)建模方法,所提模型的平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(CD)分别为1.1914 mV、1.5729 mV以及0.9963,在各项指标上均优于对比算法,说明所提模型不仅减少了信息损失还提高了建模精度,对于双率海水腐蚀数据建模具有一定现实意义
文档格式:PDF 文档大小:930.38KB 文档页数:8
为了研究14Cr12Ni2WMoVNb钢QPQ(淬火-抛光-淬火)处理后的氧化膜对渗层室温摩擦磨损和腐蚀性能的影响,利用金相、X射线衍射分析、扫描电镜、能谱分析、划痕仪、摩擦磨损试验机和电化学工作站对试样进行了表征.结果表明:氧化膜对渗层室温摩擦学性能的影响与载荷大小有关.在摩擦时间均为4 min情况下,载荷较小(50 N)时,氧化膜可以降低摩擦系数和体积磨损率;载荷较大(100 N)时,氧化膜被破坏无法降低体积磨损率.氧化膜可明显提高渗层的耐腐蚀性能.含氧化膜试样的极化曲线有明显的钝化区,点蚀电位为-13 mV,去除氧化膜试样在盐雾腐蚀12 h后表面有大范围的腐蚀区域,而含氧化膜试样盐雾腐蚀48 h后才有大区域腐蚀发生
文档格式:PDF 文档大小:528.6KB 文档页数:4
采用低温固相反应法制备了直接甲醇燃料电池用PtSn/C阳极催化剂,采用XRD、TEM等测试方法对催化剂的晶体结构和粒径大小进行了表征.结果表明:采用低温固相反应法制备的PtSn/C催化剂和Pt/C催化剂均表现为Pt的fcc晶体结构;Sn的加入导致Pt的晶胞参数增大;与同法所制Pt/C催化剂相比较,PtSn/C催化剂中金属Pt在碳载体上分布较均匀,金属粒子的粒径较小,平均粒径约为4.8nm,从而具有更大的反应表面积.电化学测试表明,对于甲醇电氧化,PtSn/C催化剂具有比Pt/C催化剂更强的催化能力
文档格式:PDF 文档大小:683.39KB 文档页数:6
通过考察不同条件下烧结对Cu-Zn和Fe-Cr催化剂变换反应性能的影响,并结合催化剂的化学吸附表征手段,探讨了用Cu-Zn系催化剂替代Fe-Cr系催化剂作为高变催化剂的可行性.活性评价结果表明,从初期活性来看,Cu-Zn系催化剂不仅在低变温度,而且在高变温度下也优于Fe-Cr系催化剂;从催化剂的烧结特性来看,Cu-Zn系催化剂虽然在450℃的高温烧结条件下于初期阶段烧结明显,但500h之后逐渐趋于稳定,稳定后的活性仍优于Fe-Cr系催化剂.活性评价结果与CO化学吸附量测试结果相吻合.据此提出了不使用Fe-Cr系催化剂,在高、低温变换过程均使用Cu-Zn系催化剂的CO变换工艺,可将入口体积分数10%的CO去除到1%以下
文档格式:PDF 文档大小:1.05MB 文档页数:8
测定了半工艺无取向电工钢热轧(终轧温度在Ar1以下)到成品各工序的织构,以取向分布函数(ODF)的形式对加临界变形的半工艺无取向硅钢的织构演变作了分析.发现其热轧板表层织构基本是典型的铁素体再结晶{111}组分,心部和1/4厚度处以铁素体剪切织构和轧制变形织构为主.冷轧变形后,心部和表层织构组分比较接近,{111}、{112}和{100}面织构都增加,但{111}组分增加最明显.软化退火后,{001}与{112}组分迅速降低,织构组分以γ纤维织构为主.通过增加临界变形,在最终去应力退火后,{111}不利面织构大量减少,高斯组分增加明显.Taylor因子可以表征不同取向晶粒对变形能的储存能力,从轧制变形时Taylor因子的分布可以解释该实验结果
文档格式:PDF 文档大小:991.94KB 文档页数:44
第一章 高分子化学实验 实验一 聚苯胺的制备和导电性的观察.5 实验二 超高吸水性丙烯酸树脂的制备.8 实验三 对苯二甲酰氯与己二胺的界面缩聚. 11 实验四 聚丁二酸丁二醇酯的合成及性能表征.13 第二章 高分子物理、材料物理实验 实验五 粘度法测定热塑性聚合物的分子量.15 实验六 熔点法测定热塑性结晶聚合物的熔融温度. 20 实验七 凝胶色谱法测定聚合物分子量及分子量分布.25 实验八 高分子材料拉伸强度测定.29 实验九 高分子材料压缩强度测定.33 实验十 高分子材料静弯曲强度的测定. 36 实验十一 高分子材料抗冲击性能测定. 38
文档格式:PDF 文档大小:991.94KB 文档页数:44
第一章 高分子化学实验 实验一 聚苯胺的制备和导电性的观察.5 实验二 超高吸水性丙烯酸树脂的制备.8 实验三 对苯二甲酰氯与己二胺的界面缩聚. 11 实验四 聚丁二酸丁二醇酯的合成及性能表征.13 第二章 高分子物理、材料物理实验 实验五 粘度法测定热塑性聚合物的分子量.15 实验六 熔点法测定热塑性结晶聚合物的熔融温度. 20 实验七 凝胶色谱法测定聚合物分子量及分子量分布.25 实验八 高分子材料拉伸强度测定.29 实验九 高分子材料压缩强度测定.33 实验十 高分子材料静弯曲强度的测定. 36 实验十一 高分子材料抗冲击性能测定. 38
文档格式:PDF 文档大小:1.36MB 文档页数:62
新能源材料基础实验 实验一 绪论 .1 实验二 水热法制备二氧化钛纳米材料 .9 实验三 粉体粒度分布的测定.11 实验四 再沉淀制备有机半导体微粒.13 实验五 材料紫外可见光谱测试.18 实验六 材料红外性能测试.22 实验七 溶胶-凝胶法制备TiO2纳米薄膜材料.27 实验八 钢铁表面化学镀镍工艺实验.30 实验九 电化学方法沉积镍工艺实验.32 实验十 铝膜的热蒸发沉积.34 实验十一 磁控溅射制备氧化物薄膜.40 实验十二 线性电位扫描法测定银在 KOH 溶液中的电化学行为 .44 实验十三 交流阻抗法测量电极过程参数.46 新能源材料专业实验 实验一 敏化太阳能电池制备及性能测试.48 实验二 硅太阳电池制备及性能测试.54 实验三 锂电池电极材料的制备及性能表征.57
文档格式:DOC 文档大小:3.06MB 文档页数:97
实验一 凝固点降低法测定葡萄糖的摩尔质量. (18) 实验二 化学反应速率. (20) 实验三 酸碱标准溶液的配制和比较 .(25) 实验四 弱酸电离常数及电离度的测定. (27) 实验五 缓冲溶液的配制和性质. (30) 实验六 电离平衡和沉淀平衡. (34) 实验七 氧化还原与电化学 .(39) 实验八 配位化合物的生成和性质 .(42) 实验九 卤素的性质 .(45) 实验十 氧硫的性质 .(48) 实验十一 碱金属和碱土金属元素 .(51) 实验十二 氯化钠的提纯 .(54) 实验十三 PbCl2 溶度积的测定(离子交换法) . (58) 实验十四 氯化银溶度积的测定-电位法. (61) 实验十五 硫酸亚铁铵的制备. (63) 实验十六 葡萄糖酸锌的制备及含量测定. (65) 实验十七 银氨配离子配位数的测定. (67) 实验十八 光度法测定邻菲咯啉铁配合物的组成. (70) 实验十九 分光光度法测定 Ti(H2O)63+的分裂能.(72) 实验二十 磺基水杨酸合铁(III)配合物的组成及稳定常数的测定.(75) 实验二十一 去离子水的制备及纯度检测. (79) 实验二十二 高锰酸钾的制备. (83) 实验二十三 三草酸合铁(Ⅲ)酸钾的制备、组成测定及表征. (85) 实验二十四 固体试样分析. (87)
文档格式:PDF 文档大小:475.72KB 文档页数:5
以大同烟煤为原料、Fe3O4作为添加剂,催化制备了煤基磁性活性炭(MCAC).利用氮气吸附等温线表征了MCAC的孔隙结构,并考察了其吸附性能(碘值、亚甲兰值)和磁学性能.结果表明,Fe3O4对MCAC孔隙的产生具有催化作用,有利于活性炭中孔的形成和发育.其中添加10% Fe3O4的MCAC中孔率高达76.0%.MCAC与普通活性炭(AC-0)相比,碘吸附值明显降低,而亚甲兰吸附值显著提高.添加7% Fe3O4的MCAC,其碘值降低了25.5%,亚甲兰值提高了79.9%.添加适量的Fe3O4制备的MCAC具有较高的比饱和磁化强度和磁导率.Fe3O4质量分数为4%和10%时,所得MCAC的比饱和磁化强度分别是AC-0的24.4倍和44.5倍
首页上页910111213141516下页末页
热门关键字
搜索一下,找到相关课件或文库资源 156 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有