点击切换搜索课件文库搜索结果(117)
文档格式:PDF 文档大小:211.81KB 文档页数:10
在数学分析课程中我们已经熟悉 Riemann积分. Riemann积分对处理连续函数和几何, 物理中的计算问题时候是很有效的.但是 Riemann积分在理论使存在一些缺陷.主要表 现在以下几个方面
文档格式:PDF 文档大小:209.87KB 文档页数:11
教学目的继续介绍集合论的基础内容,如映射,基数,可数集与不可 数集等 本节要点一一对应的思想与方法贯穿本节的核心基数的概念可数 集的讨论都要用的一一对应的方法证明两个不同的集对等,从而具有相 同的基数,特别地,要证明一个集是可数集,有时需要一定的技巧,因而具 有一定的难度,通过较多的例题和习题,使学生逐步掌握其方法和技巧 映射在数学分析课程中我们对函数已经很熟悉
文档格式:DOC 文档大小:183KB 文档页数:13
数学分析研究的基本对象是定义在实数集上函数的性质,而研究函数性质的最重要工具之一就是微分中值定理,微分中值定理主要指拉格朗日中值定理
文档格式:PDF 文档大小:161.2KB 文档页数:4
Riemann积分理论的缺陷在数学分析课程中我们已经熟悉 Riemann积分. Riemann积 分对处理连续函数和几何,物理中的计算问题时候是很有效的.但是 Riemann积分在理论使 存在一些缺陷.主要表现在以下几个方面
文档格式:PDF 文档大小:249.73KB 文档页数:11
教学目的 继续介绍集合论的基础内容, 如映射, 基数, 可数集与不 可数集等. 本节要点 一一对应的思想与方法贯穿本节的核心.基数的概念.可数 集的讨论,都要用的一一对应的方法.证明两个不同的集对等, 从而具有相 同的基数, 特别地, 要证明一个集是可数集, 有时需要一定的技巧, 因而 具有一定的难度, 通过较多的例题和习题, 使学生逐步掌握其方法和技巧. 映射 在数学分析课程中我们对函数已经很熟悉. 在数学分析中函数的定义域通常是
文档格式:PDF 文档大小:249.73KB 文档页数:11
对应的思想与方法贯穿本节的核心基数的概念可数 集的讨论都要用的一一对应的方法证明两个不同的集对等,从而具有相 同的基数,特别地,要证明一个集是可数集,有时需要一定的技巧,因而 具有一定的难度,通过较多的例题和习题,使学生逐步掌握其方法和技巧 映射在数学分析课程中我们对函数已经很熟悉.在数学分析中函数的定义域通常是 R\的子集,值域是实数集或者复数集.若将函数的定义域和值域换成一般的集,就得到映 射的概念
文档格式:PDF 文档大小:184.19KB 文档页数:8
在数学分析课程中我们已经熟悉 Riemann积分.在处理连续函数或者逐段连续函数 时,在计算一些几何和物理的量时它是很有用的但它也存在一些缺陷例如, Riemann积 分对被积函数的要求较高,它要求被积函数“基本上”是连续的(其确切含义将在§4.4 讨论),在处理极限与积分交换次序时,需要对函数列加上一致收敛性的条件等由于这些 缺陷,使得 Riemann积分在处理分析数学中的一些问题时显得不够有力因此需要建立 新的积分的理论.二十世纪初, Lebesgue建立了一种新的积分理论新的积分理论消除了 上述缺陷,并且包含了原有的 Riemann积分理论
文档格式:PDF 文档大小:103.3KB 文档页数:2
在数学分析中,我们己经知道,即使函数列在每一点收敛,也不能保证一致 收敛,因此,对可能在某个零测度集上不收敛的函数列而言,更谈不上一致收敛。 例如f(x)=x”处处0于,却不一致收敛。究其原因是自变量越靠近0越收 敛速度慢,只有更慢没有最慢,从而不可能一致收敛。但不难看出,只要挖去 个以1为右端点的小区间(1-6,1)后就有收敛最慢点x=1-8了,从而可以保 证一致收敛了。著名的俄国数学家叶果落夫( ETOPOB)任何可测函数都有 类似结果,即有下述定理成立
文档格式:PDF 文档大小:123.71KB 文档页数:4
定理2.4.1(Weierstrass聚点原理)设E为R中有界无限集,则 E≠中 证明取互异点列Mk=(x1,x2,n)∈,由于E有界,所以{Mk k=1,2.}有界,从而{x=1.是有界集,由数学分析中已证 明的直线上的聚点原理知:x1及x1的子列x→x1这时M满足第一个坐标 收敛,对于第二个坐标x2可能不收敛,但有界由直线上的聚点原理知:x2 及x2的子列x2→x2,则Mk满足第一、第二坐标收敛。此过程继续作下去,第 n次找到的子列Mm便满足所有坐标都收敛即M→M其中M= 00 (x1,x2,xn),即M为E中的聚点。证毕 推论2.4.1有界点列必有收敛子列
文档格式:PDF 文档大小:115.37KB 文档页数:3
讲授数学分析发展历史上一个重要的反例:处处连续处处不可导的函数,以及这 一反例对数学学科发展的影响;介绍德国数学家 Weierstrass 的生平与对数学分析 所作的贡献
上页12345678下页末页
热门关键字
搜索一下,找到相关课件或文库资源 117 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有