点击切换搜索课件文库搜索结果(990)
文档格式:DOC 文档大小:723KB 文档页数:12
第四章一元函数微分学的应用 第一节柯西( Cauchy)中值定理与洛必达(L'Hospital)法则 思考题: 1.用洛必达法则求极限时应注意什么? 答:应注意洛必达法则的三个条件必须同时满足 2.把柯西中值定理中的“f(x)与F(x)在闭间区[,b]上连续”换成“f(x)与F(x) 在开区间(a,b)内连续”后,柯西中值定理的结论是否还成立?试举例(只需画出函数图 象)说明 y 答:不成立
文档格式:PPT 文档大小:597.5KB 文档页数:32
第三章随机变量及其分布 3-4随机变量的独立性 设(X,Y)是二维随机变量,其联合分布函数为 F(x,y),又随机变量X的分布函数为F(x) 随机变量Y的分布函数为F(y)如果对于任意 的x,y,有 F(x, y)=Fx(x).Frl 则称X,Y是相互独立的随机变量
文档格式:PDF 文档大小:101.34KB 文档页数:28
一 、罗尔(Rolle)定理 罗尔(Rolle)定理如果函数f(x)在闭区间a,b 上连续,在开区间(a,b)内可导,且在区间端点的函数 值相等,即f(a)=f(b),那末在(a,b)内至少有一点 (a<
文档格式:PDF 文档大小:204.32KB 文档页数:7
本文比较了疫苗株854和F836-w的免疫原性,及其对三寸左右草鱼 种的有效免疫剂量。疫苗株-854和F836w均有较强的免疫原性,其保护力可达70% 以上。但试验结果初步证明,FR-84疫苗比F836-w疫苗免疫原性更强。经统计分析, F-854疫苗的免疫保护力可达88.9±12.0(6%,血清中和抗体效价为160.5±58.9(6);而 Fr-836-w疫苗分别只有71.3±14.2(6)%、88.3±262(6);二者有显的差异(0.05>
文档格式:DOC 文档大小:170KB 文档页数:2
一、选择填空 (x2 1、已知lim-ax-b=0,则( ) x→x+1 (A)a=1,b=1(B)a=-1,b=-1(C)a=-1,b=1(d)a=1b=-1 2、函数f(x)=x(x2-3x+2)(x+2)有()个不可导点。 (A)1(B)2(C)3(D)4 3、设f(x)=x(x-1)(x-2)…(x-2004),则f(0)=() (A)-2003(B)-2004(C)2003(D)2004 4、设f(x)={sin≠0
文档格式:PPT 文档大小:406KB 文档页数:11
一、反函数的求导法则 定理4.设函数y=f(x)在x的某领域内连续且严格单 调,y=f(x)在x处可导,且f(x)≠0.则y=f(x)的反 函数x=(y)在y处可导且
文档格式:PPT 文档大小:4.42MB 文档页数:174
一、罗尔(Rolle)定理 罗尔(Rolle)定理 如果函数 f (x)在闭区间 [a,b] 上连续,在开区间(a,b)内可导,且在区间端点的函数 值相等,即 f (a) = f (b),那末在(a,b) 内至少有一点 (a    b),使得函数 f (x)在该点的导数等于零
文档格式:PDF 文档大小:98.07KB 文档页数:9
1.7有理数域上的多项式 定义7.1设f(x)是一个整系数多项式,若f(x)的系数 的公因子只有±1,则称f(x)是一个本原多项式. Gauss引理两个本原多项式的乘积仍为本原多项式. 证明设 f(x)=amx+…+a1x+a, g(x)=bnxn+…+bx+b 是两个本原多项式令
文档格式:PDF 文档大小:96.51KB 文档页数:8
平余式定理 f(x除以x-c所得的余式等于f(c 证明因为x-c是一次多项式故由带余除法可知, 它除(x)所得的余式为常数r,而且,有q(x)∈ΩLx] 使得f(x)=(x-c)q(x)+r令x=c,即得,f(c)=r
文档格式:PDF 文档大小:177.37KB 文档页数:9
定理5.2.1(levi定理)若n(x)为可测集E上的非负可测函数列, 且满足中(x)≤中+1(x),中n(x)→f(x)(n→+∞),则 fdx= lim 中dx n-JE 证明G(f,E)={(x,y)0≤y
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有