点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:2.14MB 文档页数:77
第十五章傅里叶( Fourier级) 一、1 Four ier级数
文档格式:PDF 文档大小:249.35KB 文档页数:24
Fourier 变换及其逆变换 前面关于 Fourier 级数的论述都是对周期函数而言的,那么对于 非周期函数,又该如何处理呢? 在 +∞−∞ ),( 上可积的非周期函数 f x( )可以看成是周期函数的极限 情况,处理思路是这样的: (1) 先取 f x( )在[ ,] −T T 上的部分(即把它视为仅定义在[ ,] −T T 上 的函数),再以2T 为周期,将它延拓为 +∞−∞ ),( 上的周期函数 f x T ( );
文档格式:PDF 文档大小:77.48KB 文档页数:5
一、基本概念 Fourier级数定义:设f(x)是(-∞,+∞)上以2为周期的函数,且f(x)在[-n,]上绝对可积,称形如
文档格式:PDF 文档大小:95.06KB 文档页数:7
一、基本概念 1、数项级数及其收敛与发散概念给定数列{un},即u1,u2,u3,…n
文档格式:PDF 文档大小:405.99KB 文档页数:26
人们最熟悉的简单函数无非两类:幂函数和三角函数。英国数学 家 Taylor 在 18 世纪初找到了用幂函数的(无限)线性组合表示一般 函数 f x( )的方法,即通过 Taylor 展开将函数化成幂级数形式
文档格式:PDF 文档大小:283.76KB 文档页数:39
Taylor 级数与余项公式 假设函数 xf )( 在 0 x 的某个邻域 O( 0 x , r)可表示成幂级数 xf )( = ∑ ∞ = − 0 0 )( n n n xxa ,x∈O( 0 x , r), 即∑ ∞ = − 0 0 )( n n n xxa 在 O( 0 x , r)上的和函数为 xf )( 。根据幂级数的逐项可导 性, xf )( 必定在 O( 0 x , r)上任意阶可导,且对一切k + ∈N , )( = )( xf k ∑ ∞ = − −+−− kn kn n xxaknnn )()1()1( \ 0
文档格式:PDF 文档大小:214.27KB 文档页数:32
∑ ∞ = − 0 0 )( n n n xxa = a0 + )(1 0 − xxa 2 2 0 −+ xxa )( +\+ n n xxa )( − 0 +\ 这样的函数项级数称为幂级数。幂级数的部分和函数 Sn(x)是一个n −1 次多项式。 为了方便,我们通常取 0 x = 0, 也就是讨论 ∑ ∞ n=0 n n xa = a0 + 1 xa 2 2 + xa +\+ n n xa +\, 然后对所得的结果做一个平移 x = 0 − xt ,就可以平行推广到x0 ≠ 0的情 况
文档格式:PPT 文档大小:1.87MB 文档页数:15
一、周期为2L的周期函数的傅里叶级数 二、典型例题 三、小结思考题
文档格式:PPT 文档大小:2.58MB 文档页数:71
一、函数项级数的一般概念 1.定义: 设u1(x),u2(x),,n(x),…是定义在IR上的 ∞ 函数,则∑un(x)=(x)+2(x)+…+un(x)+ n=1 称为定义在区间上的(函数项)无穷级数 ∞
文档格式:PPT 文档大小:2.09MB 文档页数:135
3.1周期序列的离散傅立叶级数 3.1.1周期序列的傅立叶级数(DFS) 对于周期为N的周期序列 可用 基序列 { } 来展开
首页上页2526272829303132下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有