点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:3.33MB 文档页数:125
G( V, E ) where G ::= graph, V = V( G ) ::= finite nonempty set of vertices, and E = E( G ) ::= finite set of edges
文档格式:DOC 文档大小:616.5KB 文档页数:5
习题 1.计算下列含参变量积分的导数 (1)F(x)=e-ay'idy (2)F(y)= In yx dx (3)F(=S In(+u)dx 2.设f(x)为可微函数,且F(x)=「(x+y)/(Oy)d,求F(x) 3.求椭园积分E(k)=[√1-k2sin2odg及F(k) -k sin o
文档格式:PDF 文档大小:186.99KB 文档页数:29
对比例的推断 数据=(1,,11.0,伯努利(P) 目标一估计P值,成功的概率(或具有某种 性质的总体比例) p=x=在n次观测中成功的个数 Var( p) =p(1-p)/n =pq/n ·方差依赖均值
文档格式:PPT 文档大小:1.25MB 文档页数:44
前面讨论的函数大多是z=f(x,y)形式,如=xy和z=√x2+y2等 这种函数表达形式通常称为显函数。 但在理论与实际问题中更多遇到的是函数关系无法用显式来表 达的情况。如在一元函数中提过的反映行星运动的 Kepler方程 F(x,y)=y-x-Eny=0,0
文档格式:PPS 文档大小:612.5KB 文档页数:19
1-8 由P(AB)=OAB= →ABC=→P(ABC)=0 故P(AUBUC)=P(A)+P(B)+P(C)-P(AB) -P(AC)-P(BC)+ P(ABC)
文档格式:PDF 文档大小:26.65KB 文档页数:2
数学归纳法是我们所学过的关于数学论证的一种行之有效的有利论证工具。然而,一天 我却在网上看到这样的论证: 1、“饭永远吃不饱!”证明如下: n=1时,1粒饭绝对吃不饱,n=1成立 设n=k时成立 n=k+1时,k粒饭吃不饱,多吃一粒也吃不饱的啦,n=k+1成立 所以,对所有自然数n,都有n粒饭吃不饱
文档格式:PDF 文档大小:252.21KB 文档页数:35
Lagrange 乘数法 在考虑函数的极值或最值问题时,经常需要对函数的自变量附加 一定的条件。例如,求原点到直线 ⎩⎨⎧ =++ =++ 632 ,1zyx zyx 的距离,就是在限制条件 + + zyx = 1和 + + zyx = 632 的情况下,计算函 数 222 ),,( ++= zyxzyxf 的最小值
文档格式:PDF 文档大小:240.78KB 文档页数:44
前面讨论的函数大多是 = yxfz ),( 形式,如 z = xy 和 22 += yxz 等。 这种函数表达形式通常称为显函数。 但在理论与实际问题中更多遇到的是函数关系无法用显式来表 达的情况。如在一元函数中提过的反映行星运动的 Kepler 方程 yxF ),( = − − ε yxy = < ε < 10,0sin , 这里 x 是时间, y 是行星与太阳的连线扫过的扇形的弧度,ε 是行星 运动的椭圆轨道的离心率
文档格式:PDF 文档大小:266.22KB 文档页数:33
多元函数 定义 11.2.1 设 D 是 n R 上的点集,D 到 R 的映射 f : D → R , x 6 z 称为 n 元函数,记为 z f = ( ) x 。这时,D 称为 f 的定义域, f ( ) D = { R | ( ), } z zf ∈ = ∈ xx D 称为 f 的值域,Γ= 1 {(,) R | ( ), } n z zf + x x ∈= ∈x D 称为 f 的图像
文档格式:PDF 文档大小:283.76KB 文档页数:39
Taylor 级数与余项公式 假设函数 xf )( 在 0 x 的某个邻域 O( 0 x , r)可表示成幂级数 xf )( = ∑ ∞ = − 0 0 )( n n n xxa ,x∈O( 0 x , r), 即∑ ∞ = − 0 0 )( n n n xxa 在 O( 0 x , r)上的和函数为 xf )( 。根据幂级数的逐项可导 性, xf )( 必定在 O( 0 x , r)上任意阶可导,且对一切k + ∈N , )( = )( xf k ∑ ∞ = − −+−− kn kn n xxaknnn )()1()1( \ 0
首页上页2829303132333435下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有