点击切换搜索课件文库搜索结果(990)
文档格式:DOC 文档大小:245.5KB 文档页数:3
9-3实系数多项式根的分布 9.3.1复系数多项式的根的绝对值的上界 命题设f(x)=axn+a1xn+…+an∈C[x],其中a≠0而n≥1。令 a=max{ 则对f(x)的任一复根a,有|ak1+A/a 证明如果A=0,则a=0,命题成立。下面设A>0 如果|a1+A/a,那么,因为f(a)=0,故有 la Haa++aa a+…+an ≤A(ar-++1)=a(la--1)/(a-1) 现在|a>1,故从上式立刻得到 la a\ Ala\ /(al-1) 两边消去|a,得|ak1+A/a|,矛盾
文档格式:DOC 文档大小:154KB 文档页数:2
9-2C,R,Q上多项式的因式分解 9.2.1复数域、实数域上多项式的因式分解 定理(高等代数基本定理)复数域C上任意一个次数≥1的多项式在C内必有一个 根。 这个定理的证明是放在复变函数课程中完成的。 由高等代数基本定理,我们得到C[x]内多项式的因式分解的重要结论: 命题C[x]内一个次数≥1的多项式p(x)是不可约多项式的充分必要条件为它是一次 多项式。 证明在任一数域K上的一次多项式f(x)都是K[x]内的不可约多项式(因为 (f(x),f(x)=1)。现在假设p(x)是C[x]内的一个不可约多项式
文档格式:DOC 文档大小:395KB 文档页数:4
设D是以点A,1),B(-1),C(-1,-1)的三角形,则 √x2+3y2+1)si(xy)+2dy=(A)(中) (A)4.(B)2.(C)1.(D)0 2.设球体x2+y2+z2≤2az(a>0)中每点的质量密度与该点 到坐标原点的距离的平方成反比,则该球体的质量M与质心x坐标X为 (中) (A)M=2ka, X X=-a (C)M=2kma, x=la. (D) M=kma, x=Ia 3.设D={(x,y)∈R2x2+y221>0,f(x,y)在D上连续,在D内可微, f(0,0)=1,D的正向边界为C1。若f(x,y)在D上满足方程 afaf 1 ∫(x,y)
文档格式:PPT 文档大小:491.5KB 文档页数:17
由牛顿—莱布尼兹公式知:计算定积分f(x)d 的关键在于求出f(x)在[a,b]上的一个原函数F(x);而由 第五章知求函数的原函数(即不定积分)的方法有凑微分法、 换元法和分部积分法.因而在一定条件下,也可用这几 种方法来计算定积分
文档格式:PDF 文档大小:720.26KB 文档页数:33
Spring 2003 Derivation of lagrangian equations Basic Concept: Virtual Work Consider system of N particles located at(, x2, x,,.x3N )with 3 forces per particle(f. f, f..fn). each in the positive direction
文档格式:PDF 文档大小:307.21KB 文档页数:9
The primitive symbols of E are those of F, plus the symbol ∃. The formation Rules of E are those of F, plus the following If B is a wff of E and x is an individual variable, then ∃xB is a wff of E. The axiom schemata of E are those of F plus
文档格式:DOC 文档大小:392KB 文档页数:6
1.算符的本征方程 定义:设F是一个算符,则 Fya= 称为F的本征方程,λ称为本征值,y称为F的属于的本征函数,或本征态
文档格式:DOC 文档大小:108KB 文档页数:6
1.如何理解电子分布函数f(E)的物理意义是:能量为E的一个量子态被电子所占据的平均 几率? [解答] 金属中的价电子遵从费密-狄拉克统计分布,温度为T时,分布在能级E上的电子数目 n二 e(E-Ep)/kg g为简并度,即能级E包含的量子态数目.显然,电子分布函数 f(e (E-EF)/kg!+1 是温度7时,能级E的一个量子态上平均分布的电子数.因为一个量子态最多由一个电子所 据,所以f(E)的物理意义又可表述为:能量为E的一个量子态被电子所占据的平均几
文档格式:PPT 文档大小:316.5KB 文档页数:9
6.1质点运动微分方程及应用 mir=Flt,r,) 正问题:已知F,求(t 反问题:已知F(),求F 对于质点动力学,反问题很简单,属于微分学 问题。正问题较难些,属于常微分方程求解问 题。正问题是本章的主要内容
文档格式:DOC 文档大小:160.5KB 文档页数:3
多项式的性质 利用带余除法我们得到下面常用的定理 定理7(余数定理)用一次多项式x-a去除多项式f(x),所 得的余式是一个常数这个常数等于函数值f(a) 证明用x-a去除f(x),设商为q(x),余式为一常数c
首页上页3031323334353637下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有