点击切换搜索课件文库搜索结果(496)
文档格式:DOC 文档大小:132KB 文档页数:4
在 n 维线性空间中,任意 n 个线性无关的向量都可以取作空间的基.对于不 同的基,同一个向量的坐标一般是不同的.随着基的改变,向量的坐标是怎样变 化的
文档格式:DOC 文档大小:125KB 文档页数:3
一、线性空间的定义. 例 1 在解析几何里,讨论过三维空间中的向量.向量的基本属性是可以按平行四边形规律相加,也可以与实数作数量算法.不少几何和力学对象的性质是可以通过向量的这两种运算来描述的
文档格式:PPT 文档大小:548.5KB 文档页数:23
冷矩阵的秩( Rank of a matrix) 定义1在mxn矩阵A中,任取k行k列(k≤m,k ≤n),位于这些行列交叉处的k2个元素,不 改变它们在A中所处的位置次序而得的k阶行列 式,称为矩阵A的k阶子式。 定义2如果矩阵A有一个不等于零的阶子式D, 并且所有的r+1阶子式(如果有的话)全为零 则称D为矩阵A的最高阶非零子式,称r为矩阵 A的秩,记为R(A)=r,并规定零矩阵的秩等 于零
文档格式:PPT 文档大小:979.5KB 文档页数:28
一、 不变子空间的概念 二、 线性变换在不变子空间上的限制 三、 不变子空间与线性变换的矩阵化简 四、 线性空间的直和分解
文档格式:PPT 文档大小:348KB 文档页数:26
若干个同维数的列向量(或同维数的行向量) 所组成的集合叫做向量组.
文档格式:DOC 文档大小:200.5KB 文档页数:4
设V是数域P上一个n维线性空间.V上全体线性函数组成的集合记作 L(V,P).可以用自然的方法在L(V,P)上定义加法和数量乘法 设f,g是V的两个线性函数定义函数f+g如下:
文档格式:DOC 文档大小:101KB 文档页数:2
根据哈密尔顿一凯莱定理,任给数域P上一个级矩阵A,总可以找到数域 P上一个多项式f(x),使f(A)=0.如果多项式f(x)使f(A)=0,就称f(x)以A 为根当然,以为A根的多项式是很多的,其中次数最低的首项系数为1的以A为 根的多项式称为A的最小多项式这一节讨论应用最小多项式来判断一个矩阵能 否对角化的问题
文档格式:DOC 文档大小:86KB 文档页数:2
定义 2 所谓数域 P 上一个 n 维向量就是由数域 P 中 n 个数组成的有序数组
文档格式:PPT 文档大小:456KB 文档页数:16
上一节我们定义了向量组的秩,如果把矩阵的每一行看成 一个向量,那么矩阵就是由这些行向量组成的。同样,如果把 矩阵的每一列看成一个向量,则矩阵也可以看作是由这些列向 量组成的。 定义3.4.1所谓矩阵的行秩是指矩阵的行向量所组成的 向量组的秩,矩阵的列秩是由矩阵列向量所称向量组的秩
文档格式:PPT 文档大小:324KB 文档页数:10
行列式理论在解一类特殊的线性方程组方面有重要应用, 对于二元一次和三元一次方程组,当方程组的系数行列式不 为0时,方程组有唯一的公式解。对于n元一次方程组,相应 的结论也成立,这就是下面要介绍的 Gramer法则
首页上页4243444546474849下页末页
热门关键字
搜索一下,找到相关课件或文库资源 496 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有