点击切换搜索课件文库搜索结果(4015)
文档格式:PPT 文档大小:84KB 文档页数:8
我们先简述一下求不定积分为什么要比求导数困难得多? 我们知道,如果已知一个函数可导,则我们利用求导公式及导数 的运算法则,总可以求出它的导数。但是求函数的不定积分则不然, 它的运算关键是求出被积函数的一个原函数,而原函数的定义不象导 数定义那样具有构造性,它只告诉我们其导数恰是某个已知函数 并 没有告诉我们怎样由 求出它的原函数的具体形式和途径
文档格式:PDF 文档大小:7.53MB 文档页数:776
第六章 多变量函数的微分法 §1.多变量函数的极限.连续性 §2.偏导函数多变量函数的微分 §3.隐函数的微分法 §4.变量代换 §5.几何上的应用 §6.台劳公式 §7.多变量函数的极值 第七章 带参数的积分 §1.带参数的常义积分 §2.带参数的广义积分,积分的一致收性 §3.广义积分中的变量代换,广义积分号下微分法及积分法 §4.尤拉积分 §5.福里叶积分公式
文档格式:PPT 文档大小:891KB 文档页数:18
在研究一元函数时,已经看到了函数关于自变量的 变化率(导数)的重要性.对于二元函数也同样有一个处于 重要地位的函数变化率问题.因二元函数有两个自变量 且这两个自变量是彼此无关的,故可考虑函数关于其中 的一个自变量的变化率,此时将另一个自变量看作不变 这种变化率称之为偏导数
文档格式:PPT 文档大小:444.5KB 文档页数:13
一、原函数的定义 问题:若某一函数的导数为f(x),求这一个函数 设这函数为F(x),则 定义1设f(x)定义在区间上,若存在函数F(x),el,有 则称F(x)是已知函数f(x)在该区间上的一个原函数
文档格式:PPT 文档大小:189KB 文档页数:6
由第一章知:显函数y=f(x),也可写成F(x,y =y-f(x)=0.由方程F(x,y)=0确定的隐函数可能 有两种情形:y是x的函数y=f(x)或x是y的函 数x=(y);但并非所有隐函数都可化为一个显函 数.如y-esy+x2y2=0. 因而有必要研究隐函数的求导方法,下面通过几个例子来介绍
文档格式:PPT 文档大小:535.5KB 文档页数:29
偏导数 我们已经知道一元函数的导数是一个很重 要的概念,是研究函数的有力工具,它反映了该 点处函数随自变量变化的快慢程度。对于多元函 数同样需要讨论它的变化率问题。虽然多元函数 的自变量不止一个,但实际问题常常要求在其它 自变量不变的条件下,只考虑函数对其中一个自 变量的变化率,因此这种变化率依然是一元函数 的变化率问题,这就是偏导数概念,对此给出如 下定义
文档格式:PPT 文档大小:1.56MB 文档页数:39
一 点态收敛 二 函数项级数(或函数序列)的基本问题 三 函数项级数(或函数列)的一致收敛性 四 一致收敛性判别 五 小结
文档格式:PPT 文档大小:79KB 文档页数:16
第四章函数和程序结构 本章的主要内容包括: 1、C语言函数的概念,如何调用C提供的库函数,如何自己来定义函数,并调用这些函数。中的数据表示 2、多文件组成C程序的方法 3、变量生存期作用域 4、C语言的数学函数
文档格式:PDF 文档大小:27.64MB 文档页数:353
第一节映射与函数 (Mapping and Function) 一问题的提出 二 函数基本概念 三 函数的几种特性 四五 复合函数、反函数 小结与思考判断题 第二节数列的极限 一、概念的引入 二、数列的定义 三、数列的极限 四、数列极限的性质 五、小结 第三节 函数的极限 一、函数极限定义 二、函数极限的性质 三、小结思考判断题 第四节 无穷小与无穷大 一、无穷小 二、无穷大 三、无穷小与无穷大的关系 四、小结思考题 第五节 极限运算法则 一、无穷小的运算性质 二、极限四则运算法则 三、求极限方法举例 四、复合函数的极限运算法则 五、小结思考题 第六节极限存在准则两个重要极限 一 极限存在的准则I 重要极限I 二极限存在的准则Ⅱ 重要极限Ⅱ 三小结与思考判断题 第七节无穷小的比较 问题的提出 二无穷小的比较 三等价无穷小替换 四小结与思考判断题 第八节函数的连续性与间断点 一、函数的连续性 二、函数的间断点 三、小结思考题 第九节连续函数的运算与 初等函数的连续性 连续函数的和、差、积、商的 连续性 反函数与复合函数的连续性 四小结与思考判断题 第十节 闭区间上连续函数的性质 有界性与最大值最小值定理 零点定理与介值定理 三小结思考判断题
文档格式:DOC 文档大小:167KB 文档页数:5
第三章复积分 3.1概念与性质 f(x)dx实函数积分 f()d复函数积分 C:复平面内逐段光滑,f(z)为复函数
首页上页4849505152535455下页末页
热门关键字
搜索一下,找到相关课件或文库资源 4015 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有