点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:979.54KB 文档页数:8
铁矿石烧结烟气中含有较高浓度的CO(体积分数0.5%~2%),因此对其进行CO脱除意义重大。为了探究不同类型催化剂的催化效果,采用浸渍法制备了Pt涂层蜂窝金属催化剂和铁铈氧化物催化剂,并通过X射线荧光光谱分析(XRF)对其组分含量进行了分析。二者在模拟烧结烟气中进行CO脱除性能的对比实验,活性测试表明,不同CO初始体积分数、烟气温度以及水汽含量对CO催化氧化的脱除效率影响较大。当模拟烟气中不含水汽的时候,二者在180 ℃及更高温度下对CO的脱除效率均能达到60%以上。反应温度为180 ℃,水汽体积分数为11.7%时,Pt负载型催化剂中的CO转化率为63.9%,而该条件下Ce改性Fe2O3催化剂的CO转化率仅为34.9%。当温度在180~300 ℃范围内,Pt负载型催化剂具有较好的抗水性,且继续升高温度,水汽体积分数增加对催化剂效率的负面影响更显著。如水汽体积分数从0增加到27.1%时,与180 ℃时的催化效率相比,Pt负载型催化剂在240 ℃时的催化效率由73.9%降至62.3%,降幅远远增大。另外,对这两种催化剂进行了抗硫性测试。当水汽体积分数为0时,Ce改性Fe2O3催化剂抗硫性更佳,但当SO2和水汽同时存在的情况下,Pt负载型催化剂具有更好的抗硫性。因此,在实际烧结中建议采取高效的脱硫措施并布置脱水层以减少其对于催化剂的负面影响
文档格式:PDF 文档大小:0.99MB 文档页数:10
研究了高钛球团的焙烧特征和固结行为.随着TiO2含量的增加,球团焙烧难度增大,当TiO2质量分数由10%增加至21%时,高钛球团所需预热时间由12 min延长至26 min以上,焙烧球强度由每个2486 N降低至每个1728 N.高钛球团由于FeTiO3含量高,导致氧化速度慢、预热球氧化程度低,不利于焙烧固结时钛赤铁矿固溶体晶粒的长大,使得球团固结强度差.通过添加NaOH结合润磨工艺增大颗粒表面能和反应活性,促进了固相扩散,并生成少量低熔点化合物,有利于再结晶过程的扩散迁移,使Ti富集在Fe2TiO5中并促进钛赤铁矿晶粒长大,强化了高钛球团焙烧固结,可使预热时间缩短至16 min,球团强度提高至每个2141 N
文档格式:PDF 文档大小:2.47MB 文档页数:9
系统研究了Ti-IF钢冶炼过程和铸坯中含Ti夹杂物的组成、分布与微观形貌,揭示了含Ti夹杂物的衍变规律.热力学分析和实验结果表明:在IF钢冶炼过程中无TiN生成,含Ti夹杂物的存在形式是以TiO2为主的钛氧化物结合其他氧化物的复合夹杂:而在连铸凝固过程中,由于钢液温度降低和元素的偏析作用,TiN夹杂以异质形核的方式生成.IF钢铸坯中非金属夹杂物主要是大尺寸Al2O3颗粒和存在中间过渡层的TiN—Al2TiO5-Al2O3复合夹杂物,其形核长大过程是[Al]、[Ti]和[O]先在细小的Al2O3颗粒上反应生成一层Al2TiO5,然后TiN在Al2TiO5表面形核长大.根据连铸过程和铸坯中含钛夹杂物的研究得出,Ti-IF钢铸坯中TiN夹杂难以去除,但是可以使其变性以实现对钢中含钛夹杂物的控制
文档格式:PDF 文档大小:2.83MB 文档页数:20
1.稀土元素在纯铁液、生铁液以及熔渣中之挥发量均较小。其与熔渣、大气以及耐火材料均有剧烈的作用,致使金属中稀土残留量较少且不稳定。稀土硫化物等稀土夹杂物上浮符合一级反应规律,稀土在金属熔体中之扩散、烧损也符合一级反应规律,但斜率较小。2.稀土元素与粘土砖、高铝砖、镁砖、铝镁砖、硅砖、刚玉、电熔氧化镁、氧化锆等多种耐火材料均有不同程度的作用。其作用产物会剥落而进入钢液形成稀土夹杂。稀土脱氧、脱硫产物以及与耐火材料作用产物上浮时有相当一部分未浮至液面而粘附在坩埚壁上,这一实验结果有助于了解钢包中非金属夹杂物的去除机理。用自射线照相研究了稀土与耐火材料作用机理。3.各单一稀土金属加入铸铁液时之吸收率按递减的顺序可排列为:Y≈Dy≈Gd>Ce≈Sm≈Nd≈Pr>La。按单位稀土原子浓厚的脱硫率的递减顺序则为:La≥Sm≥Ce≈Pr≈Nd>Y≈Dy≈Gd。用35硫自射线照相证实了稀土在钢液脱硫及回硫现象。4.用金相显微镜、电子探针、X光结构分析研究了各单一稀土元素在铸铁液中所形成之物相及其特征。稀土物相多为RE2O2,RES,RE2S3,REAlO3、C6C2用Y2C3等。5.用141Ce测定铈在CaO一SiO2一Al2O3及CaO一SiO2一Al2O3一CeO2两渣中之扩散系数及其与温度的关系
文档格式:PDF 文档大小:706.51KB 文档页数:9
运用Fluent动网格模型实现采空区的四维动态变化,并用用户自定义函数将煤低温氧化动力学机理及非均质孔隙率函数编入Fluent中,结合时间和空间,对U+L型通风系统采空区升温规律进行四维动态模拟研究.研究表明:非均质孔隙率四维动态模型能更真实地反应孔隙率的空间与时间变化,空间某一位置的孔隙率随时间呈负指数递减;工作面推进速度越大,采空区升温速率越小,推进速度为3.6 m·d-1时平均升温速率仅为推进速度为1.2 m·d-1时的1/5;然而,推进速度越大,高温点的深度越大,不利于自燃的预防;尾巷的存在使得温度场范围扩大,温度升高,CO主要从尾巷流出,尾巷释放的CO量是回风巷CO释放量的10倍.最后利用现场实测的数据对结果进行验证,表明模拟结果是正确可信的
文档格式:PDF 文档大小:1.44MB 文档页数:9
西昌钢钒厂由于转炉热量不足而以转炉—LF精炼—RH精炼—连铸工艺生产IF钢,为探究RH强制脱碳与自然脱碳工艺生产IF钢精炼效果,采用生产数据统计、氧氮分析、夹杂物自动扫描、扫描电镜和能谱分析等手段,对不同脱碳工艺对顶渣氧化性以及钢的洁净度影响进行了详细研究。结果表明:(1)与自然脱碳工艺炉次相比,采用强制脱碳工艺的炉次在转炉结束与RH进站钢中的平均[O]含量更低;(2)两种工艺脱碳结束钢中的[O]含量基本在同一水平;(3)强制脱碳工艺的炉次在RH结束时渣中平均T.Fe的质量分数降低了1.3%。在能满足RH脱碳效果的前提下,尽量提高转炉终点钢液碳含量、降低钢液氧含量,后续在RH精炼时采用强制吹氧脱碳工艺,适当增大吹氧量来弥补钢中氧,可显著降低IF钢顶渣氧化性。自然脱碳工艺与强制脱碳工艺控制热轧板T.O含量均比较理想;与自然脱碳工艺相比,强制脱碳工艺可有效降低IF钢[N]含量,这与强制脱碳工艺真空室内碳氧反应更剧烈所导致的CO气泡更多和气液反应面积更大有关。脱碳工艺对IF钢热轧板中夹杂物类型、尺寸及数量没有明显影响,夹杂物主要由Al2O3夹杂、Al2O3–TiOx夹杂与其他类夹杂物组成,以夹杂物的等效圆直径表示夹杂物尺寸,以上三类夹杂物平均尺寸分别为4.5、4.4和6.5 μm,且钢中尺寸在8 μm以下的夹杂物数量占比高于75%。在RH精炼过程中,尽量降低RH脱碳结束钢中[O]含量,有利于提高钢液洁净度
文档格式:PDF 文档大小:528.6KB 文档页数:4
采用低温固相反应法制备了直接甲醇燃料电池用PtSn/C阳极催化剂,采用XRD、TEM等测试方法对催化剂的晶体结构和粒径大小进行了表征.结果表明:采用低温固相反应法制备的PtSn/C催化剂和Pt/C催化剂均表现为Pt的fcc晶体结构;Sn的加入导致Pt的晶胞参数增大;与同法所制Pt/C催化剂相比较,PtSn/C催化剂中金属Pt在碳载体上分布较均匀,金属粒子的粒径较小,平均粒径约为4.8nm,从而具有更大的反应表面积.电化学测试表明,对于甲醇电氧化,PtSn/C催化剂具有比Pt/C催化剂更强的催化能力
文档格式:PDF 文档大小:4.15MB 文档页数:5
以X射线衍射仪、扫描隧道电子显微镜、能量散射光谱仪等手段对在悬浮预热器内筒上使用前后的反应烧结碳化硅陶瓷进行分析,研究该陶瓷应用于悬浮预热器上的损毁机制.碳化硅陶瓷中残存金属硅和表面的碳化硅在高温使用工况下首先氧化成SiO2,SiO2在K2O (g)、Na2O (g)、KCl (g)、Na Cl (g)等蒸气以及氯化物作用下黏度降低,形成覆盖于陶瓷表面的氧化层,继而被高速的气固流体冲蚀和磨损掉,并导致新的界面出现.如此循环,使碳化硅陶瓷的外侧逐渐变薄和断裂,直至损毁.提高陶瓷的致密性和降低残余硅含量是改进反应烧结碳化硅陶瓷在悬浮预热器中使用性能的有效途径
文档格式:PDF 文档大小:757.77KB 文档页数:7
采用喷射成形技术制备了M3型高速钢和以Nb替代V的M3型高速钢.利用扫描电镜、X射线衍射、差示扫描量热仪和金相显微镜研究了Nb对M3型高速钢组织的影响.喷射成形能有效消除宏观偏析,细化组织.以Nb代V,提高了MC型碳化物开始析出温度,大量MC相先于共晶反应析出,呈独立的近球形分布于晶界,同时其尺寸减小.由于消耗大量C,抑制了共晶反应,M2C片层数量减少且厚度变薄,其在热变形过程中更易于分解,进一步增加了组织均匀性.低温低载荷时含铌的M3型高速钢抗磨损性能显著优于M3高速钢,温度升高到500℃时磨损机制逐渐以氧化磨损为主,两合金的抗磨损性能差距减小,主要原因是大量呈弥散球形分布的含铌MC型碳化物能有效提高高速钢的磨粒磨损抗性,而其对抗氧化性能并无明显作用
文档格式:PDF 文档大小:0.99MB 文档页数:10
研究了高钛球团的焙烧特征和固结行为.随着TiO2含量的增加,球团焙烧难度增大,当TiO2质量分数由10%增加至21%时,高钛球团所需预热时间由12min延长至26min以上,焙烧球强度由每个2486N降低至每个1728N.高钛球团由于FeTiO3含量高,导致氧化速度慢、预热球氧化程度低,不利于焙烧固结时钛赤铁矿固溶体晶粒的长大,使得球团固结强度差.通过添加NaOH结合润磨工艺增大颗粒表面能和反应活性,促进了固相扩散,并生成少量低熔点化合物,有利于再结晶过程的扩散迁移,使Ti富集在Fe2TiO5中并促进钛赤铁矿晶粒长大,强化了高钛球团焙烧固结,可使预热时间缩短至16min,球团强度提高至每个2141N.
首页上页4950515253545556下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有