点击切换搜索课件文库搜索结果(6291)
文档格式:PPT 文档大小:1.24MB 文档页数:27
微元法 我们先回忆一下求曲边梯形面积S的步骤:对区间[a,b作划分 a=x
文档格式:PPT 文档大小:1.48MB 文档页数:46
从实例看微分与积分的联系 到目前为止,我们已详细介绍了微分与积分(这里专指定积分) 的基本概念,但还不曾涉及微分与积分之间的任何联系。事实上,揭 示微分与积分之间的内在联系是需要许多预备知识的。现在这些预备 知识已经基本具备,可以为这两个重要的概念建立桥梁了
文档格式:PPT 文档大小:350KB 文档页数:13
微分的逆运算不定积分 定义6.1.1若在某个区间上,函数F(x)和f(x)成立关系 F(x)=f(x), 或等价地, 则称F(x)是f(x)在这个区间上的一个原函数
文档格式:PPT 文档大小:699.5KB 文档页数:20
带 PeanoTaylor余项的公式 导数,则存在x的一个邻域,对于该邻域中的任一点x,成立 定理5.3.1(带 PeanoTaylor余项的公式)设f(x)在x处有 阶
文档格式:PPT 文档大小:877.5KB 文档页数:24
前面关于 Fourier 级数的论述都是对周期函数而言的,那么对于 非周期函数,又该如何处理呢? 在(−,+) 上可积的非周期函数 f (x)可以看成是周期函数的极限 情况,处理思路是这样的:
文档格式:PPT 文档大小:959.5KB 文档页数:29
无界区域上的反常重积分 设 D为平面 2 R 上的无界区域,它的边界是由有限条光滑曲线组 成的。假设D上的函数 f (x, y) 具有下述性质:它在D中有界的、可求 面积的子区域上可积。并假设所取的割线 为一条面积为零的曲线
文档格式:PPT 文档大小:1.29MB 文档页数:39
Taylor级数与余项公式 假设函数f(x)在x的某个邻域O(xo,r)可表示成幂级数 (x)=a, (x-x)\(xo,r), n=0 即∑an(x-x)在O(xo,r)上的和函数为f(x)
文档格式:PPT 文档大小:564.5KB 文档页数:16
产生导数的实际背景 微积分的发明人之一──Newton最早用导数研究的是如何确定 力学中运动物体的瞬时速度问题。 一个运动物体在时刻t 的位移可以用函数s = s(t)来描述,它在时 间段[t, t + t]中位移的改变量为s = s( t + t) − s(t),所以当t 很小的时 候,它在时刻t的瞬时速度可以近似地用它在[t, t + t]中的平均速度
文档格式:PPT 文档大小:1.22MB 文档页数:34
无穷小量的比较 定义3.3.1若limf(x)=0,则称当x→x时f(x)是无穷小量 x→x 无穷小量是以零为极限的变量。这里的极限过程x→x可以扩 充到x→x+、x-、∞、+∞、-∞0等情况
文档格式:PPT 文档大小:1.33MB 文档页数:41
含参变量反常积分的一致收敛 含参变量的反常积分也有两种:无穷区间上的含参变量反常积分 和无界函数的含参变量反常积分
首页上页523524525526527528529530下页末页
热门关键字
搜索一下,找到相关课件或文库资源 6291 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有