点击切换搜索课件文库搜索结果(66)
文档格式:PPT 文档大小:619.5KB 文档页数:25
一、 特征值与特征向量 二、 特征值与特征向量的求法 三、 特征子空间 四、 特征多项式的有关性质
文档格式:PPT 文档大小:435KB 文档页数:17
一、 线性变换的乘积 二、 线性变换的和 三、 线性变换的数量乘法 四、 线性变换的逆 五、 线性变换的多项式
文档格式:PDF 文档大小:141.18MB 文档页数:434
上册内容为极限理论和一元微积分,共十二章; 第一章 引论 第二章 数列极限 第三章 实数系的基本定理 第四章 函数极限 第五章 连续函数 第六章 导数与微分 第七章 微分学中值定理和Taylor定理 第八章 微分学的应用 第九章 不定积分 第十章 定积分 第十一章 积分学的应用 第十二章 广义积分
文档格式:PDF 文档大小:8.35MB 文档页数:89
第一章 函数与极限 第二章 导数与微分 第三章 微分中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 第七章 微分方程 第八章 空间解析几何与向量代数
文档格式:PDF 文档大小:11.37MB 文档页数:128
第一章 函数与极限 第二章 导数与微分 第三章 微分中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 第七章 微分方程 第八章 空间解析几何与向量代数
文档格式:PDF 文档大小:4.62MB 文档页数:477
第一章 函数与极限 第二章 导数与微分 第三章 中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 第七章 空间解析几何与向量代数
文档格式:PDF 文档大小:17.96MB 文档页数:221
第一节 微分中值定理 第二节 洛必达法则 第三节 泰勒公式 第四节 函数的单调性与曲线的凹凸性 第五节 函数的极值与最大值最小值 第六节 函数图形的描绘 第七节 曲率
文档格式:PDF 文档大小:21.42MB 文档页数:289
第一节 常数项级数的概念和性质 第二节 常数项级数审敛法 第三节 幂级数 第四节 函数展开成幂级数 第五节 函数的幂级数展开式的应用 第六节 函数项级数的一致收敛性及一致收敛级数的基本性质 第七节 傅立叶级数 第八节一般周期函数的傅立叶级数
文档格式:PDF 文档大小:10.33MB 文档页数:137
第一节微分方程的基本概念 (Basic concept of differential equations) 一问题的提出 二微分方程的定义 (Definition of differential equations) 三 主要问题——求方程的解 四 小结思考判断题 第二节可分离变量的微分方程 (Differential equations of the variables separated) 可分离变量的微分方程 二 典型例题 小结与思考题 第三节齐次方程 (Homogeneous equation) 一齐次方程 二可化为齐次的方程 三小结思考题 第四节一阶线性微分方程 (Linear differential equation of first order) 一线性方程 (Linear differential equation) 二伯努利方程 (Bernoulli differential equation) 小结 思考判断题 第五节全微分方程 (Total differential equation) -全微分方程及其求法 二积分因子法 小结与思考题 第六节可降阶的高阶微分方程 y(\=f(x,y,..,y(\-)型 二y\=f(x,y',.·,y(\-①)型 恰当导数方程 四齐次方程 五小节与思考题 第七节高阶线性微分方程 (Higher linear differential equation) 概念的引入 线性微分方程的解的结构 降阶法与常数变易法 四小结思考题 第八节常系数齐次线性微分方程 (Constant coefficient homogeneous linear differential equation) 一定义(Definition) 二二阶常系数齐次线性方程解法 三n阶常系数齐次线性方程解法 四小结与思考题 第九节常系数非齐次线性微分方程 (Constant coefficient non-homogeneous linear differential equation) 一f(x)=exPm(x)型 二f(x)=ex[P,(x)cos cax+P,(x)sin cax]型 三小结思考题
文档格式:PDF 文档大小:16.33MB 文档页数:192
第一节多元函数的基本概念 一、平面点集 二、多元函数概念 三、多元函数的极限 四、多元函数的连续性 第二节偏导数 一、偏导数的定义及其计算法 二、高阶偏导数 第三节全微分 一、全微分的定义 二、全微分在近似计算中的应用 第四节多元复合函数的求导法则 一、多元复合函数求导的链式法则 二、多元复合函数的全微分 第五节隐函数的求导公式 一、一个方程的情形 二、方程组的情形 第五节多元函数微分学的几何应用 一、一元向量值函数及其导数 二、空间曲线的切线与法平面 三、曲面的切平面与法线 第七节方向导数与梯度 一、方向导数 二、梯度 三、物理意义 第七节 一、多元函数的极值 二、最值应用问题 三、条件极值
上页1234567下页
热门关键字
搜索一下,找到相关课件或文库资源 66 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有