点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:959.5KB 文档页数:29
无界区域上的反常重积分 设 D为平面 2 R 上的无界区域,它的边界是由有限条光滑曲线组 成的。假设D上的函数 f (x, y) 具有下述性质:它在D中有界的、可求 面积的子区域上可积。并假设所取的割线 为一条面积为零的曲线
文档格式:DOC 文档大小:475.5KB 文档页数:10
1.验证下列等式,并与(3)、(4)两式相比照 (1)Jf(x=f(x)+C; (2)Jj()=f(x)+C 2.求一曲线y=f(x),使得在曲线上每一点(ry处的切线斜率为2x,且通过点(25)
文档格式:PPT 文档大小:596.5KB 文档页数:20
复合函数求导法则 定理4.4.1(复合函数求导法则)设函数u=g(x)在x=x可导, 函数y=f(u)在u=uo=g(x)处可导,则复合函数y=f(g(x))在x=x可 导,且有 证因为y=f(u)在u处可导,所以可微。由可微的定义,对任 意一个充分小的△u≠0,都有
文档格式:PDF 文档大小:172.92KB 文档页数:15
含参变量常义积分的定义 设 yxf ),( 是定义在闭矩形 × dcba ],[],[ 上的连续函数,对于任意固 定的 ∈ dcy ],[ , yxf ),( 是 ba ],[ 上关于 x的一元连续函数,因此它在 ba ],[ 上的积分存在
文档格式:DOC 文档大小:868KB 文档页数:22
6.1不定积分的概念和运算法则 前面学习了极限、连续函数、实数的连续性,以及导数于微分,特别是重点学习了导 数、微分的概念。我们知道求导是一种运算,它的被运算对象是函数。在以前我们也学过 很多的运算。例如,加、减、乘、除、乘方、开方、指数、对数等等。我们可以将求导运 算与这些已知的很熟悉的运算相类比。(用旧的概念和新的概念相类比,从已有的经验中来 发现新概念、新知识中的规律
文档格式:DOC 文档大小:239KB 文档页数:4
2广义积分的收敛性 主要知识点:广义积分及其敛散性概念; 非负函数广义积分收敛性的比较判别法、柯西判别法 一般函数广义积分收敛性的Abel、 Dilichlet判别法; 广义积分与级数的关系
文档格式:PDF 文档大小:283.76KB 文档页数:39
Taylor 级数与余项公式 假设函数 xf )( 在 0 x 的某个邻域 O( 0 x , r)可表示成幂级数 xf )( = ∑ ∞ = − 0 0 )( n n n xxa ,x∈O( 0 x , r), 即∑ ∞ = − 0 0 )( n n n xxa 在 O( 0 x , r)上的和函数为 xf )( 。根据幂级数的逐项可导 性, xf )( 必定在 O( 0 x , r)上任意阶可导,且对一切k + ∈N , )( = )( xf k ∑ ∞ = − −+−− kn kn n xxaknnn )()1()1( \ 0
文档格式:PDF 文档大小:445.84KB 文档页数:43
§13.1 二重 Riemann 积分 §13.2 多重积分及其基本性质 §13.3 重积分的计算 §13.4 重积分的变量替换 §13.4.1 仿射变换 §13.4.2 一般的变量替换 §13.4.3 极坐标变换 §13.5 重积分的应用和推广
文档格式:PDF 文档大小:408.15KB 文档页数:49
函数极值与Fermat引理 定义5.1.1 设 f x( )在(, ) a b 上有定义, 0 x ab ∈(,),如果存在点 x0的 某一个邻域 ),(),( 0 δ ⊂ baxO ,使得 fx fx () ( ) ≤ 0 , ),( ∈ xOx 0 δ , 则称x0是 f x( )的一个极大值点, f x( ) 0 称为相应的极大值
文档格式:DOC 文档大小:152.5KB 文档页数:3
主要知识点:级数及其敛散性概念; 正项级数敛散性的比较判别法、比式判别法根式判别法、积分判别法。 交错级数的 Leibunitz判别法, Leibunitz型级数余项的性质。 一般项级数收敛性的Abel、 Dilichlet判别法
首页上页6566676869707172下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有