点击切换搜索课件文库搜索结果(293)
文档格式:DOC 文档大小:245KB 文档页数:3
北京大学:《高等代数》课程教学资源(讲义)第十二章 张量积与外代数 12.1 多重线性映射 12.2 线性空间的张量积 12.2.1 域 K 上的二线性空间的张量积的定义(归纳地有多个张量积的定义)
文档格式:PPT 文档大小:422KB 文档页数:14
一、多项式的概念 中学多项式的定义:n个单项式(不含加法或减 法运算的整式)的代数和叫多项式。 例:4a+3b,3x2+2x+1,y- 在多项式中,每个单项式叫做多项式的项。这是 形式表达式。 后来又把多项式定义为R上的函数:
文档格式:DOC 文档大小:344.5KB 文档页数:37
第1章 线性方程组的消元解法 第2章 矩阵代数 第3章 行列式 第4章 n 维向量与线性方程组的一般解法 第5章 整数与多项式 第6章 二次型
文档格式:PPT 文档大小:453KB 文档页数:12
利用行列式的依行(列)展开可以把n阶行列式化为n-1 阶行列式来处理,这在简化计算以及证明中都有很好的应用。 但有时我们希望根据行列式的构造把n阶行列式一下降为n-k 阶行列式来处理,这是必须利用 Laplace展开定理。为了说明 这个方法,先把余子式和代数余子式的概念加以推广
文档格式:PPT 文档大小:181.5KB 文档页数:12
定义由n2个数组成的n阶行列式 等于所有取自不同行列的n个元素的 乘积的代数和∑-)apap2an 其中P1P2…Pn为自然数12,,n的一个排列, t为这个排列的逆序数
文档格式:PPT 文档大小:444KB 文档页数:16
一、C上多项式 对于F[x]上的多项式f(x),它在F上未必有根, 那么它在C上是否有根? 定理1.8.1(代数基本定理): 每一个次数大于零的多项式在复数域上至多有 个根。 定理1.8.2:
文档格式:DOC 文档大小:236.5KB 文档页数:4
2.5.2可逆矩阵,方阵的逆矩阵 1、可逆矩阵,方阵的逆矩阵的定义 定义设A是属于K上的一个n阶方阵,如果存在属于K上的n阶方阵B,使 BA= AB=E, 则称B是A的一个逆矩阵,此时A称为可逆矩阵。 2、群和环的定义 定义设A是一个非空集合。任意一个由A×A到A的映射就成为定义在A上的代数 运算
文档格式:DOC 文档大小:1.13MB 文档页数:29
关于数的加、减、乘、除等运算的性质通常称为数的代数性质代数所研究的问题主要涉及数的代数性质,这方面的大部分性质是有理数、实数、复数的 全体所共有的。 定义1设P是由一些复数组成的集合,其中包括0与1.如果P中任意两个数的和、差、积、商(除数不为零)仍然是中的数,那么P就称为一个数域显然全体有理数组成的集合、全体实数组成的集合、全体复数组成的集合都是数域这三个数域分别用字母Q、R、C来代表全体整数组成的集合就不是数域如果数的集合P中任意两个数作某一种运算的结果都仍在P中,就说数集 P对这个运算是封闭的因此数域的定义也可以说成,如果一个包含0,1在内的数集P对于加法、减法、乘法与除法(除数不为零)是封闭的,那么P就称为一个数域
文档格式:DOC 文档大小:245.5KB 文档页数:3
9-3实系数多项式根的分布 9.3.1复系数多项式的根的绝对值的上界 命题设f(x)=axn+a1xn+…+an∈C[x],其中a≠0而n≥1。令 a=max{ 则对f(x)的任一复根a,有|ak1+A/a 证明如果A=0,则a=0,命题成立。下面设A>0 如果|a1+A/a,那么,因为f(a)=0,故有 la Haa++aa a+…+an ≤A(ar-++1)=a(la--1)/(a-1) 现在|a>1,故从上式立刻得到 la a\ Ala\ /(al-1) 两边消去|a,得|ak1+A/a|,矛盾
文档格式:PDF 文档大小:129.02KB 文档页数:8
1.设f(x1,……,xn)是数域K上的m元齐次多项式 证明:如果存在数域K上的n元多项式g(x1,…,xn)与h(x1,…,xn),使 f(x1,…,xn)=g(x1,…,xn)h(x1,…,xn) 则g(x1,…,xn)与h(x1,…,xn)也都是齐次多项式 证明设degf=m,degg=k,degh=l.令
首页上页4567891011下页末页
热门关键字
搜索一下,找到相关课件或文库资源 293 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有