网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(990)
同济大学:《高等数学》课程电子教案(PPT课件讲稿)第一章 函数极限
文档格式:PPT 文档大小:901.5KB 文档页数:44
函数极限 关于函数的极限,根据自变量的变化过程,我们主 要研究以下两种情况: 一、当自变量x的绝对值无限增大时,f(x)的变化趋势, 即x→∞时,f(x)的极限 二、当自变量x无限地接近于x时,f(x)的变化趋势 即x→x时,f(x)的极限
《小波分析》课程教学讲义(Wavelets)第一章 准备知识
文档格式:PDF 文档大小:215.11KB 文档页数:19
本章将介绍一些必要的准备知识。第一节为 Hilbert空间中基的概念,第二节为线性算子的定义,第三节为有关积分的性质,第四节将介绍框架与 Riesz基。 1. BanachHibert空间与空间设X为数域K上的线性空间,若函数:X→R+满足如下三个条件: 1.三角不等式:w(x+y)≤w(x)+w(y),x,y∈, 2.齐次性:w(ax)=lalw(x),a∈k,x∈X, 3.正定性:w(x)=0分x=0
《高等数学》课程电子教案:第三章 导数与微分习题与答案
文档格式:DOC 文档大小:499KB 文档页数:7
第三章导数与微分 第一节导数的概念 思考题: 1.思考下列命题是否正确?如不正确举出反例 (1)若函数y=f(x)在点x处不可导,则f(x)在点x处一定不连续 答:命题错误.如y=|x|在x=0处不可导,但在此点连续 (2)若曲线y=f(x)处处有切线,则y=f(x)必处处可导 答:命题错误.如:y2=2x处处有切线,但在x=0处不可导
复旦大学:《科学计算与MATLAB语言》课程教学资源(PPT课件讲稿)第五讲 线性代数中的 数值计算问题
文档格式:PPT 文档大小:72.5KB 文档页数:33
【引例】求下列三阶线性代数方程组的近似解 2x1-5x2+4x3=5 x1+5x2-2x3=6 x1+2x2+4x=5 MATLAB程序为: A=2-54:15-2;-124] b=[5;6;5] X=A\\b
《高等数学》课程电子教案:第四讲 一元函数积分的概念、性质与基本定理
文档格式:DOC 文档大小:299KB 文档页数:11
一、一元函数积分的概念、性质与基本定理 1、原函数、不定积分 在区间上,如F(x)=f(x),称f(x)为F(x)的导函数,称 F(x)为f(x)的原函数,原函数与导函数是一种互逆关系。 如F(x)为f(x)的一个原函数,则F(x)+C为f(x)的全体原 函数
华中师范大学:《数学分析》课程PPT教学课件(讲稿)第二章(2.2.2)导数的定义
文档格式:PPT 文档大小:44KB 文档页数:1
如果函数u=u(x)及v=v(x)在点x具有导数,那么它们的积在 点x也具有导数,并且 [u(x).(x) ]'=u(x)(x)+u(x)(x). 证明由导数的定义
《概率论数理统计》课程PPT教学课件:§6 总体参数的假设检验
文档格式:PPT 文档大小:1.59MB 文档页数:58
假设检验是统计推断的另一个重要的组成部 分。它分为参数检验与非参数检验。参数检验是 已知总体X的分布函数F(x,0)的分布形式,对总 体分布函数中的未知参数θ提出某种假设,然后 利用样本X1,X2,Xn提供的信息对所提出的假设 进行检验,根据检验的结果对所提出的假设作出 拒绝或接受的判断。非参数检验是指总体X的分 布函数表达式F(x)不知道时,假设总体X的分布 函数为某个指定的分布函数F(x),问怎样利用 子样X1X2,Xn提供的信息来对所提出的假设作 出判断,是拒绝或接受
中国科学院:《数值计算方法》第五章 分段低次插值
文档格式:DOC 文档大小:295KB 文档页数:19
5-1多项式插值的问题 前面根据区间[ab上给出 的节点做插值多项式Ln(x) 近似f(x),一般总认为L1(x)的次 数n越高逼近(x)的精度 越好,但实际上并非如此。这是 因为对任意的插值节点 ,当n>0时,L(x)不一定收敛 到∫(x),本世纪初龙格 ( Runge)就给出了一个等距节 点插值多项式Ln(x)不收 敛的f(x)的例子。他给出的函数 为f(x)=1(1+x)
临沂大学(临沂师范学院):《数学分析》课程教学资源(讲义)第九章 定积分
文档格式:PDF 文档大小:157.67KB 文档页数:13
一、基本概念 1.设闭区间[ab]内有n-1个点,依次为 a= x
《最优化方法》课程教学资源(题解)第九次 惩罚函数法
文档格式:PPT 文档大小:376KB 文档页数:23
约束极值问题的算法 一、惩罚函数法(suMT) 1.问题:minf(x) s.t.g(x)≥0i=1,…,m minf(x) s.t.g(x)≥0这里g(x)=(g1(x),…,gm(x) min f() S.t.x∈D D={x|g(x)≥0}:可行点集或可行解集
首页
上页
5
6
7
8
9
10
11
12
下页
末页
热门关键字
Pdf
e
电子技术基础清华大学
q
MATLaB
Li
Foxpro
b
x
WINDOWS
o
l
Java编程
Fourier
ENGLISH
doc
DNA
Book
1D
2
AND
abc
b2
b2b
BUSINESS
br
Access
AUTOCAD
AT
《印刷设计》
../1
an
a1
a3
3g
3MAX
3s
18
《网络教学与学习》
《无机化学》
搜索一下,找到相关课件或文库资源
990
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有