点击切换搜索课件文库搜索结果(15764)
文档格式:PPT 文档大小:5.28MB 文档页数:224
第一节 对弧长的曲线积分 一、对弧长的曲线积分的概念与性质 二、对弧长的曲线积分的计算法 第二节 对坐标的曲线积分 一、对坐标的曲线积分的概念与性质 二、 对坐标的曲线积分的计算法 三、两类曲线积分之间的联系 第三节 格林公式及其应用 一、格林公式 二、平面上曲线积分与路径无关的等价条件 三、二元函数的全微分求积 第四节 对面积的曲面积分 一、对面积的曲面积分的概念与性质 二、对面积的曲面积分的计算法 第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系 第六节 高斯公式 Green 公式 Gauss 公式 推广
文档格式:PPT 文档大小:2.84MB 文档页数:170
第一节 导数的概念 第二节 函数的和、差、积、商的求导法则 一、和、差、积、商的求导法则 二、例题分析 三、小结 第三节 反函数与复合函数的求导法则 一、反函数的导数 二、复合函数的求导法则 三、小结 第四节 初等函数的求导问题 双曲函数与反双曲函数的导数 一、初等函数的求导问题 二、双曲函数与反双曲函数的导数 三、小结 第五节 高阶导数 一、高阶导数的定义 二、 高阶导数求法举例 三、小结 第六节 隐函数的导数由参数方程所确定的函数的导数相关变化率 一、隐函数的导数 二、对数求导法 三、由参数方程所确定的函数的导数 四、相关变化率 五、小结 第七节 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、微分形式的不变性 七、小结 第八节 微分在近似计算中的应用 一、计算函数增量的近似值 二、计算函数的近似值 三、误差估计 四、小结
文档格式:DOC 文档大小:154KB 文档页数:2
9-2C,R,Q上多项式的因式分解 9.2.1复数域、实数域上多项式的因式分解 定理(高等代数基本定理)复数域C上任意一个次数≥1的多项式在C内必有一个 根。 这个定理的证明是放在复变函数课程中完成的。 由高等代数基本定理,我们得到C[x]内多项式的因式分解的重要结论: 命题C[x]内一个次数≥1的多项式p(x)是不可约多项式的充分必要条件为它是一次 多项式。 证明在任一数域K上的一次多项式f(x)都是K[x]内的不可约多项式(因为 (f(x),f(x)=1)。现在假设p(x)是C[x]内的一个不可约多项式
文档格式:PPT 文档大小:3.93MB 文档页数:208
第一节 对弧长的曲线积分 一、问题的提出 二、对弧长的曲线积分的概念 三、对弧长曲线积分的计算 四、几何与物理意义 第二节 对坐标的曲线积分 一、问题的提出 二、对坐标的曲线积分的概念 三、对坐标的曲线积分的计算 第三节 格林公式及其应用 一、区域连通性的分类 二、格林公式 三、简单应用 第四节 对面积的曲面积分 一、概念的引入 二、对面积的曲面积分的定义 三、计算法 第五节 对坐标的曲面积分 一、基本概念 二、概念的引入 三、概念及性质 四、计算法 五、两类曲面积分之间的联系 第六节 高斯公式 通量与散度 一、高斯公式 二、简单的应用 三、物理意义——通量与散度 第七节 斯托克斯公式环流量与旋度 一、斯托克斯(stokes)公式 二、简单的应用 三、物理意义---环流量与旋度
文档格式:PDF 文档大小:1.82MB 文档页数:339
本书系统地阐述了有限单元法的基本概念、原理和方法,内容涉及结构有限元分析的各个领域,包括平面问题、空间问题、杆系结构、平板结构、壳体结构以及结构动力学问题、材料非线性问题、几何非线性问题、边界非线性问题。此外,还简要介绍了结构物中的热传导、流体与固体相互作用,以及在吸收有限元技术的基础上发展起来的边界单元法、有限条法、有限元线法、无网格法。本书适宜用于工程力学、结构工程、机械工程、道路与桥梁工程、岩土工程等专业的研究生教材和继续学习的材料,也可作为其他相关专业科技人员的参考书
文档格式:PDF 文档大小:1.37MB 文档页数:308
全书共六章,可大致分为三个部分:第一部分,包括引言和第一章基本概念,它是全书的基础,在以后各章都要用到,应予以充分重视;第二部分,包括第二、三两章,介绍含一个代数运算的群的理论.其中第二章介绍群的最基本的知识;第三章则进一步介绍正规子群和群的同态与同构,以及和它们相关联的群论中最基本最重要的定理,如群的同态和同构定理,共轭、正规化子和中心化子,Sylow定理和有限交换群基本定理等等;第三部分,包括第四、五、六三章,介绍含有两个代数运算的环与域的理论.其中第四章介绍环的基本知识;第五章介绍环论中一个特殊问题———惟一分解整环内的因子分解理论,并由此介绍了两种特殊的环类,即主理想整环和欧氏环;第六章介绍域,一种加强条件的环,并且主要介绍代数扩域,特别是有限次扩域和有限域
文档格式:PPT 文档大小:4.37MB 文档页数:230
第一节 微分方程的基本概念 一、问题的提出 二、微分方程的定义 三、主要问题-----求方程的解 第二节 可分离变量的微分方程 第三节 齐次方程 一、齐次方程 二、可化为齐次的方程 第四节 一阶线性微分方程 一、线性方程 二、伯努利方程 第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结 第六节 欧拉-柯西近似法 一、方向场 积分曲线 二、欧拉-柯西近似法 第七节 可降阶的高阶微分方程 一、 型 二、 型 三、恰当导数方程 四、齐次方程 第八节 高阶线性微分方程 一、概念的引入 二、线性微分方程的解的结构 三、降阶法与常数变易法 第九节 二阶常系数齐次线性微分方程 一、定义 二、二阶常系数齐次线性方程解法 三、n阶常系数齐次线性方程解法 第十节 二阶常系数非齐次线性微分方程 第十一节 欧拉方程 第十二节 微分方程的幂级数解法 一、问题的提出 二、 特解求法 三、二阶齐次线性方程幂级数求法 第十三节 常系数线性微分方程组解法举例 一、微分方程组 二、常系数线性微分方程组的解法 三、小结
文档格式:PPT 文档大小:1.96MB 文档页数:114
5.1 向量空间的定义 一、向量空间概念的引入 二、向量空间的定义 三、向量空间的例子 四、向量空间的基本性质 5.2 向量的线性相关性 5.3 基维数和坐标 一. 基 二. 维数 三. 关于基和维数的几个结论 四. 坐标 五. 过渡矩阵及向量在不同基下坐标的关系 六. 过渡矩阵的性质 5.4 子空间 5.5 向量空间的同构 第六章 线性方程组 6.1 消元解法 6.3 齐次线性方程组解的结构 6.4 一般 线性方程组解结构 6.5 秩与线性相关性 6.6 特征向量与矩阵的对角化 第七章 线性变换 7.1 线性变换的定义及性质 7.2 线性变换的运算 7.3 线性变换的矩阵 7.4 不变子空间 7.5 线性变换的本征值和本征向量 第八章 欧氏空间 8.1 欧氏空间的定义及基本性质 8.2 度量矩阵与正交基 8.3 正交变换与对称变换 8.4 子空间与正交性 8.5 对称矩阵的标准形
文档格式:DOC 文档大小:168KB 文档页数:5
一、填空与选择题(每小题4分,共32分) 1.以曲线{x2+y2=为准线,母线平行于z轴的柱面方程是x2+y2-2x=0 z=2x 提示:这实际上是求曲线{x2+y2=2关于xoy面的投影柱面的方程 =2x 将方程Jx2+y2=中的z消去得x2+y2=2x,这就是投影柱面的方程. =2x 2.曲线{x2+2-4z=0绕轴旋转所得的旋转曲面的方程是. y=0 答:x2+y2+z2-4z=0. 提示: 将方程x2+z2-4z=0中的x换成±{x2+y2,得 x2+y2+z2-4z=0
文档格式:PDF 文档大小:11.85MB 文档页数:155
第一节 导数概念 (The Derivative) 一问题的提出 二 导数的定义 三四五 由定义求导数举例 导数的意义 五可导与连续的关系 六小结与思考判断题 第二节函数的求导法则 一和、差、积、商的求导法则 二反函数的导数 三复合函数的导数 *四双曲函数与反双曲函数的导数 五初等函数求导的小结 六思考判断题 第三节高阶导数 (Higher Derivatives) 一 问题的提出 高阶导数的定义 三 高阶导数的求法 四 小结与思考判断题 第四节隐函数求导与参数方程求导 隐函数求导法 对数求导法 三四五六 参数方程求导法则 相关变化率 小结与思考判断题 第五节函数的微分 (Differentiation of Function) 二微分的定义 三可微与可导关系 四基本初等函数的微分公式与法则 五小结与思考判断题
首页上页808809810811812813814815下页末页
热门关键字
搜索一下,找到相关课件或文库资源 15764 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有