点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:224.49KB 文档页数:10
乘积测度的构造利用了§2.2测度的延拓定理 Fubini定理是 积分理论的基本定理之一,它是关于二元函数的二重积分累次积分交换积 分顺序的定理Fubini定理在理论推导和计算积分方面有广泛的应用
文档格式:PPT 文档大小:535.5KB 文档页数:15
含参变量常义积分的定义 设f(x,y)是定义在闭矩形[a,b]x[c,d]上的连续函数,对于任意固 定的y∈[c,d],f(x,y)是[a,b]上关于x的一元连续函数,因此它在[a,b 上的积分存在,且积分值∫f(xy)dx由y唯一确定。也就是说, I(y)= f(x, y)dx,[c,d] 确定了一个关于y的一元函数
文档格式:PPT 文档大小:722.5KB 文档页数:10
在计算定积分时,换元法是一种强有力的方法.在计算二重积分时,也常用此法.特别是二重积分f(xy)do不易计算时,我们也可根据积分区域D的形状和被积函数 f(x,y)的特点,用一个适当的变换
文档格式:PPT 文档大小:569.5KB 文档页数:30
重积分的应用 把定积分的元素法推广到二重积分的应用中 若要计算的某个量U对于闭区域D具有可加性 (即当闭区域D分成许多小闭区域时,所求量U相应 地分成许多部分量,且U等于部分量之和),并且 在闭区域D内任取一个直径很小的闭区域do时, 相应地部分量可近似地表示为f(x,y)do的形式, 其中(x,y)在do内.这个f(x,y)do称为所求量U 的元素,记为dU,所求量的积分表达式为
文档格式:PDF 文档大小:113.06KB 文档页数:31
一、问题的提出 把定积分的元素法推广到二重积分的应用中 若要计算的某个量U对于闭区域D具有可加性 (即当闭区域D分成许多小闭区域时,所求量U相 应地分成许多部分量,且U等于部分量之和),并 且在闭区域D内任取一个直径很小的闭区域do 时,相应地部分量可近似地表示为f(x,y)do的 形式,其中(x,y)在do内这个f(x,y)do称为 所求量U的元素,记为dU,所求量的积分表达式 为
文档格式:PPT 文档大小:1.12MB 文档页数:41
I、原郾数的概念 Ⅱ、不定积分的定义和几何意义 Ⅲ、基本积分公式 Ⅳ、不定积分的性质
文档格式:PPT 文档大小:1.04MB 文档页数:23
若直接用二重积分的定义去计算它的值,将是复 杂和困难,甚至是不可能的下面利用二重积分的几 何意义来寻求二重积分的计算方法
文档格式:PPT 文档大小:384.5KB 文档页数:28
第三节柯西积分公式及其推论 1柯西积分公式 利用柯西积分定理(复围线形式)导 出一个用边界值表示解析函数内部值的 积分公式
文档格式:PPT 文档大小:352.5KB 文档页数:6
类似于一元函数的广义积分对于二元函数也有两 类广义二重积分.即可分为积分区域无限与被积函数无 界两种下面只研究无界区域上的二重积分的计算方法 定义3设D是xoy面上的无界区域,f(x2y)在D上连续且G 是D上的任意一个闭区域上若G以任何方式无限扩展且 趋于D时,均有limf(x,y)dxdy=1
文档格式:DOC 文档大小:214KB 文档页数:4
含参积分提供了表达函数的又一手段。我们称由含参积分表达的函数为含参积分。这种形式的函数在理论 上和应用上都有重要作用,有很多很有用的特殊函数就是这种形式的函数 下面讨论这种由积分所确定的函数的连续性,可微性与可积性 定理1若函数f(x,y)在矩形[abcd上连续,则函数1(y)=Jf(x,y)d在c,l]上连续 注:在定理的条件下,有
首页上页8889909192939495下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有