点击切换搜索课件文库搜索结果(1968)
文档格式:DOC 文档大小:55KB 文档页数:5
第9章随机事件与概率 第八单元全概率公式 一、学习目标 通过本节课的学习,知道全概率公式是加法公式和乘法公式的综合,是概率 论中的重要公式,要求会用它计算有关的概率问题. 二、内容讲解 全概率公式 全概率公式也是概率论的重要公式之一.它是概率加法公式和乘法公式的综 合应用.在引入全概率公式之前,先看一个例子 例设有5个乒乓球(3个新的,2个旧的)每次取一个,无放回地取两次, 求第2次取到新球的概率. 解设A={第1次取到新球},B={第2次取到新球}
文档格式:PDF 文档大小:32.32MB 文档页数:201
第1章 导论 一、学习指导 二、选择题 三、选择题答案 四、教材练习题详细解答 第2章 数据的搜集 一、学习指导 二、选择题 三、选择题答案 第3章 数据的图表展示 一、学习指导 二、选择题 三、选择题答案 四、教材练习题详细解答 第4章 数据的概括性度量 一、学习指导 二、主要公式 三、选择题 四、选择题答案 五、教材练习题详细解答 第5章 概率与概率分布 一、学习指导 二、主要公式 三、选择题 四、选择题答案 五、教材练习题详细解答 第6章 统计量及其抽样分布 一、学习指导 二、主要公式 三、选择题 四、选择题答案 五、教材练习题详细解答 第7章 参数估计 一、学习指导 二、主要公式 三、选择题 四、选择题答案 五、教材练习题详细解答 第8章 假设检验 一、学习指导 二、主要公式 三、选择题 四、选择题答案 五、教材练习题详细解答 第9章 分类数据分析 一、学习指导 二、主要公式 三、选择题 四、选择题答案 五、教材练习题详细解答 第10章 方差分析 一、学习指导 二、主要公式 三、选择题 四、选择题答案 五、教材练习题详细解答 第11章 一元线性回归 一、学习指导 二、主要公式 三、选择题 四、选择题答案 五、教材练习题详细解答 第12章 多元线性回归 一、学习指导 二、主要公式 三、选择题 四、选择题答案 五、教材练习题详细解答 第13章 时间序列分析和预测 一、学习指导 二、主要公式 三、选择题 四、选择题答案 五、教材练习题详细解答 第14章 指数 一、学习指导 二、主要公式 三、选择题 四、选择题答案 五、教材练习题详细解答 模拟试题一 模拟试题一解答 模拟试题二 模拟试题二解答
文档格式:PPT 文档大小:627.5KB 文档页数:32
Gauss公式 一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss公式也是计算曲面积分的一 有效方法
文档格式:PPT 文档大小:631KB 文档页数:32
Gauss公式 一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了 Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时 Gauss公式也是计算曲面积分的一 有效方法
文档格式:PPT 文档大小:631KB 文档页数:32
一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss公式也是计算曲面积分的一 有效方法
文档格式:PPT 文档大小:582KB 文档页数:33
Stokes公式 一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PDF 文档大小:9.71MB 文档页数:370
第十二章 数项级数 1 级数的收敛性 2 正项级数 一 正项级数收敛性的一般判别原则 二 比式判别法和根式判别法 三 积分判别法 四 拉贝判别法 3 一般项级数 一 交错级数 二 绝对收敛级数及其性质 三 阿贝耳判别法和狄利克雷判别法 第十三章 函数列与函数项级数 1 一致收敛性 一 函数列及其一致收敛性 二 函数项级数及其一致收敛性 三 函数项级数的一致收敛性判别法 2 一致收敛函数列与函数项级数的性质 第十四章 幂级数 1 幂级数 2 函数的幂级数展开 一 泰勒级数 二 初等函数的幂级数展开式 3 复变量的指数函数·欧拉公式 第十五章 傅里叶级数 1 傅里叶级数 一 三角级数·正交函数系 二 以2π为周期的函数的傅里叶级数 三 收敛定理 2 以2l为周期的函数的展开式 3 收敛定理的证明 第十六章 多元函数的极限与连续 1 平面点集与多元函数 一 平面点集 二 R2上的完备性定理 三 二元函数 四 n元函数 2 二元函数的极限 3 二元函数的连续性 第十七章 多元函数微分学 1 可微性 2 复合函数微分法 3 方向导数与梯度 4 泰勒公式与极值问题 一 高阶偏导数 二 中值定理和泰勒公式 三 极值问题 第十八章 隐函数定理及其应用 1 隐函数 2 隐函数组 3 几何应用 一 平面曲线的切线与法线 二 空间曲线的切线与法平面 三 曲面的切平面与法线 4 条件极值 第十九章 含参量积分 1 含参量正常积分 2 含参量反常积分 3 欧拉积分 一 Γ函数 二 B函数 三 Γ函数与B函数之间的关系 第二十章 曲线积分 1 第一型曲线积分 2 第二型曲线积分 第二十一章 重积分 1 二重积分概念 2 直角坐标系下二重积分的计算 3 格林公式·曲线积分与路线的无关性 4 二重积分的变量变换 5 三重积分 6 重积分的应用 7 n重积分 8 反常二重积分 9 在一般条件下重积分变量变换公式的证明 第二十二章 曲面积分 1 第一型曲面积分 2 第二型曲面积分 3 高斯公式与斯托克斯公式 4 场论初步 第二十三章 流形上微积分学初阶 1 n维欧氏空间与向量函数 2 向量函数的微分 3 反函数定理和隐函数定理 4 外积、微分形式与一般斯托克斯公式
文档格式:PPT 文档大小:582KB 文档页数:33
一、斯托克斯(stokes)公式 前面所介绍的 Gauss 公式是 Green 公式的推广 下面我们 从另一个角度来推广Green 公式。 Green 公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PPT 文档大小:631KB 文档页数:32
前面我们将 Newton-Lebniz 公式推广到了平面 区域的情况,得到了Green 公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green 公式做进一步推广,这 就是下面将要介绍的Gauss 公式,Gauss 公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss 公式也是计算曲面积分的一 有效方法
文档格式:PPT 文档大小:582KB 文档页数:33
Stokes公式 一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式。 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
12345678下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1968 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有