当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

《电路与模拟电子技术》课程教学资源(PPT课件讲稿)第8章 负反馈放大器与集成运算放大器(8.3)集成运算放大电路

资源类别:文库,文档格式:PPT,文档页数:72,文件大小:341KB,团购合买
运算放大器大多被制作成集成电路,所以常称为集成 运算放大电器,简称为集成运放。在一个集成电路中,可以 含有一个运算放大器,也可以含有多个(两个或四个)运算放 大器,集成运算放大器既可作直流放大器又可作交流放大器, 其主要特征是电压放大倍数高,功率放大很大,输入电阻非 常大和输出电阻较小。
点击下载完整版文档(PPT)

83集成运算放大电路 运算放大器大多被制作成集成电路,所以常称为集成 算放大电器,简称为集成运放。在一个集成电路中,可以 含有一个运算放大器,也可以含有多个(两个或四个)运算放 大器,集成运算放大器既可作直流放大器又可作交流放大器 其主要特征是电压放大倍数高,功率放大很大,输入电阻非 常大和输出电阻较小。由于集成运算放大器具有体积小、重 量轻、价格低、使用可靠、灵活方便、通用性强等优点,在 检测、自动控制、信号产生与信号处理等许多方面得到了 泛应用

运算放大器大多被制作成集成电路,所以常称为集成 运算放大电器,简称为集成运放。在一个集成电路中,可以 含有一个运算放大器,也可以含有多个(两个或四个)运算放 大器,集成运算放大器既可作直流放大器又可作交流放大器, 其主要特征是电压放大倍数高,功率放大很大,输入电阻非 常大和输出电阻较小。由于集成运算放大器具有体积小、重 量轻、价格低、使用可靠、灵活方便、通用性强等优点,在 检测、自动控制、信号产生与信号处理等许多方面得到了广 泛应用。 8.3集成运算放大电路

831集成运放的理想化条件 (1)开环差模电压放大倍数趋于无穷 (2)输入电阻趋于无穷 (3)输出电阻趋于零 (4)共模抑制比趋于无穷 5)有无限宽的频带; (6)当输入端=l+时,ln=0 目前,集成运放的开环差模电压放大倍数均在104以上, 输入电阻达到兆欧数量级,输出电阻在几百欧以下。因此, 作近似分析时,常常对集成运放作理想化处理

8.3.1集成运放的理想化条件 (1) 开环差模电压放大倍数趋于无穷; (2) 输入电阻趋于无穷; (3) 输出电阻趋于零; (4) 共模抑制比趋于无穷; (5) 有无限宽的频带; (6) 当输入端u -= u + 时,uo =0。 目前,集成运放的开环差模电压放大倍数均在104以上, 输入电阻达到兆欧数量级,输出电阻在几百欧以下。因此, 作近似分析时,常常对集成运放作理想化处理

对于工作在线性状态的理想集成运放,具有两个重要 特性 1.u≈l 理想集成运放两输入端间的电压为0,但又不是短 路,故常称为“虚短”。 ≈0 理想运放的两个输入端不取电流,但又不是开路, 般称为“虚断” 对于工作在非线性状态的理想集成运放,则具有: u >u 时 当l<u1时,n=+U。其中 n Omn是集成运放的正向或反向输出电压最大值

对于工作在线性状态的理想集成运放,具有两个重要 特性。 1. 理想集成运放两输入端间的电压为0,但又不是短 路,故常称为“虚短”。 2. 理想运放的两个输入端不取电流,但又不是开路,一 般称为“虚断” 。 对于工作在非线性状态的理想集成运放,则具有: 当 时, ;当 时, 。其中 是集成运放的正向或反向输出电压最大值。 −  + u u i − = i +  0 − + u  u uO = −UOm −  + u u O UOm u = + UOm

集成运放输出电压与差分输入电压之间的关系, 可用图819所示的电压传输特性来描述。 鸟11 +uom Id 图8.19运算放大器的电压传输特性

集成运放输出电压与差分输入电压之间的关系, 可用图8.19所示的电压传输特性来描述。 图8.19运算放大器的电压传输特性

83.2基本运算电路 1.反相比例运算电路 反相比例运算电路如图8.20所示。 RE R1 u I u 图820反相比例运算电路 由虚短、虚断可得:

8.3.2基本运算电路 1. 反相比例运算电路 反相比例运算电路如图8.20所示。 图8.2 0 反相比例运算电路 由虚短、虚断可得:

L≈ oo 十 RI R R R

I F i i i i u u = =   = − + − + 0 0 F I O R u R u = − 1 I F O u R R u 1 = −

2.同相比例运算电路 同相比例运算电路如图821所示。 F R1 u u10- R 图821同相运算电路 由虚短、虚断可得:

2. 同相比例运算电路 同相比例运算电路如图8.21所示。 图8.21同相运算电路 由虚短、虚断可得:

O R R MIo R R

F I i i i i u u u = = =  = − + − + 1 0 R1 u R u u I F I O = − − I F O u R R u (1 ) 1 = +

3.加减运算电路 (1)加法运算电路 加法运算电路如图8.22所示 RE 1 RT 1I2 二 II 图822加法运算电路

3. 加减运算电路 (1) 加法运算电路 加法运算电路如图8.22所示。 图8.22 加法运算电路

因反相输入端为“虚地”,故得 u F RR 2 于是,输出电压为 R R l1+-l 1 lI R 12 当时R1=R2=R,则u0=-(ln+l2)

因反相输入端为“虚地” ,故得 于是,输出电压为 当时 ,则 1 2 2 1 1 1 1 2 1 2 2 2 1 1 1 1 R u R u i i R u i R u i R u i I I I I F O F I I I I = + = + − = = = ( ) 2 12 1 11 I F I F O u R R u R R u = − + R11 = R12 = RF ( ) O I1 I 2 u = − u + u

点击下载完整版文档(PPT)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
共72页,可试读20页,点击继续阅读 ↓↓
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有