第六章辅助装置 液压系统中的辅助装置,如蓄能器、滤油器、油箱、热交换器、管件等,对系统的动态 性能、工作稳定性、工作寿命、噪声和温升等都有直接影响,必须予以重视。其中油箱需根 据系统要求自行设计,其它辅助装置则做成标准件,供设计时选用 第一节蓄能器 、功用和分类 职能 符号 溶能器主要有弹簧式和充气式两大类,其中充 气式又包括气瓶式、活塞式和皮囊式三种 结构活塞式:结构简单、容易安装,维修方便:但 密封性差,动作不够灵敏 气囊式:惯性小、反应灵敏、且结构小、重量 轻、容易充气,且气体保存时间长 蓄能器的功用主要是储存油液多余的压力能 功用并在需要时释放出来供给系统,作轴助动力 1.功用蓄能器的功用主要是储存油液多余的压力能,并在需要时释放出来。在液压系统中 蓄能器常用来 图6-1液压系统中的流量供应情况T一一个循环周期 (1)在短时间内供应大量压力油液:实现周期性动作的液压系统(见图6-1),在系统不 需大量油液时,可以把液压泵输出的多余压力油液储存在蓄能器内,到需要时再由蓄能器快 速释放给系统。这样就可使系统选用流量等于循环周期内平均流量q的液压泵,以减小电 动机功率消耗,降低系统温升。 (2)维持系统压力:在液压泵停止向系统提供油液的情况下,蓄能器能把储存的压力油 液供给系统,补偿系统泄漏或充当应急能源,使系统在一段时间内维持系统压力,避免停电 或系统发生故障时油源突然中断所造成的机件损坏。 (3)减小液压冲击或压力脉动:蓄能器能吸收,大大减小其幅值 2.分类蓄能器主要有弹簧式和充气式两大类,其中充气式又包括气瓶式、活塞式和皮囊式 三种,它们的结构简图和特点见表6-1。过去有一种重力式蓄能器,体积庞大,结构笨重
第六章 辅助装置 液压系统中的辅助装置,如蓄能器、滤油器、油箱、热交换器、管件等,对系统的动态 性能、工作稳定性、工作寿命、噪声和温升等都有直接影响,必须予以重视。其中油箱需根 据系统要求自行设计,其它辅助装置则做成标准件,供设计时选用。 第一节 蓄 能 器 一、功用和分类 1.功用 蓄能器的功用主要是储存油液多余的压力能,并在需要时释放出来。在液压系统中 蓄能器常用来: 图 6-1 液压系统中的流量供应情况 T—一个循环周期 (1)在短时间内供应大量压力油液:实现周期性动作的液压系统(见图 6-1),在系统不 需大量油液时,可以把液压泵输出的多余压力油液储存在蓄能器内,到需要时再由蓄能器快 速释放给系统。这样就可使系统选用流量等于循环周期内平均流量 qm 的液压泵,以减小电 动机功率消耗,降低系统温升。 (2)维持系统压力:在液压泵停止向系统提供油液的情况下,蓄能器能把储存的压力油 液供给系统,补偿系统泄漏或充当应急能源,使系统在一段时间内维持系统压力,避免停电 或系统发生故障时油源突然中断所造成的机件损坏。 (3)减小液压冲击或压力脉动:蓄能器能吸收,大大减小其幅值。 2.分类 蓄能器主要有弹簧式和充气式两大类,其中充气式又包括气瓶式、活塞式和皮囊式 三种,它们的结构简图和特点见表 6-1。过去有一种重力式蓄能器,体积庞大,结构笨重
反应迟钝,现在工业上已很少应用 表6.1蓄能器和种类和特点 害能一的种类和特点 1利用弹爱的压细和伸长来储存、释放压力能 2构简单,反虚测蚊,但容量小 3供小容量、低压(p≤1-1.2MP)回路冲之用,不适用于高压 1利用气体的压缩和影胀来储存、释放压力能(气体和油液在蓄能 器中直接接触) 2容量大惯性小,反应灵敏轮廓尺寸小,但气体春易混人油内 影喻系桃工作平稳性 3.只适用于大流量的中、低压回路 1利用气体的压缩和影胀来储存释放压力能(气体和油液在蓄需 器中由活塞隔开) 2结构简单,工作可靠安装容易维护方便,假性大活嘉 和缸壁之间有摩撫,反应不够灵敏密封要求较高 3用来储存能量戒供中、高压系统吸收压力脉动之用 式 1利用气体的压缩和膨胀来储存释放压力能(气体和油液在能 器中由皮囊隔开) 2带弹货的菌状进油凋使油液胞进人能器佴防止皮自口被 挤出,充气阀只在蓄能器工作前皮囊充气时打开,蓄能器工作时则关 3结构尺寸小,重量轻安装方使维护暮易皮画馓性小,厘皮灵 敏,但皮囊和壳体制造都较难 4.折合型皮囊容量较大,可用来情存能意:纹型皮囊适用于吸收 容量计算 蓄能器容量的大小和它的用途有关。下面以皮囊式蓄能器为例进行说 蓄能器用于储存和释放压力能时(图6-2),蓄能器的容积V是由其充气压力p、工作中 要求输出的油液体积V、系统最高工作压力p1和最低工作压力p2决定的。由气体定律有 P, k 蓄能时 放能时 图6-2皮囊式蓄能器储存和释放能量的工作过程 paVFp1VrpaV2=const (6-1) 式中:V1和V2分别为气体在最高和最低压力下的体积;n为指数
反应迟钝,现在工业上已很少应用。 表 6.1 蓄能器和种类和特点 二、容量计算 蓄能器容量的大小和它的用途有关。下面以皮囊式蓄能器为例进行说明。 蓄能器用于储存和释放压力能时(图 6-2),蓄能器的容积 VA 是由其充气压力 pA、工作中 要求输出的油液体积 VW、系统最高工作压力 p1 和最低工作压力 p2 决定的。由气体定律有 图 6-2 皮囊式蓄能器储存和释放能量的工作过程 pA V n A=p1V n 1=p2V n 2=const (6-1) 式中:V1和 V2分别为气体在最高和最低压力下的体积;n 为指数
n值由气体工作条件决定:当蓄能器用来补偿泄漏、保持压力时,它释放能量的速度是 缓慢的,可以认为气体在等温条件下工作,n=1:当蓄能器用来大量提供油液时,它释放能 量的速度是很快的,可以认为气体在绝热条件下工作,n=1.4 由于V=V1-V2,因此由式(6-1)可得 YH)"" D值理论上可与p相等,但为了保证系统压力为p2时蓄能器还有能力补偿泄漏,宜使 D<p2,一般对折合型皮囊取p=(0.8~0.85)p,波纹型皮囊取p=(0.6~0.65)pz。此外, 如能使皮囊工作时的容腔在其充气容腔1/3至2/3的区段内变化,就可使它更为经久耐用 蓄能器用于吸收液压冲击时,蓄能器的容积V可以近似地由其充气压力pA、系统中允 许的最高工作压力p和瞬时吸收的液体动能来确定。例如,当用蓄能器吸收管道突然关闭 时的液体动能为ρA1υ2/2时,由于气体在绝热过程中压缩所吸收的能量为 Cpav=Pa(va/v)d Pave 04 /pn)9263-1 故得 ( palv- Pa(P1)0.286 上式未考虑油液压缩性和管道弹性,式中p的值常取系统工作压力的90%。蓄能器用于 吸收液压泵压力脉动时,它的容积与蓄能器动态性能及相应管路的动态性能有关。 三、使用和安装 蓄能器在液压回路中的安放位置随其功用而不同:吸收液压冲击或压力脉动时宜放在冲 击源或脉动源近旁:补油保压时宜放在尽可能接近有关的执行元件处 使用蓄能器须注意如下几点 (1)充气式蓄能器中应使用惰性气体(一般为氮气),允许工作压力视蓄能器结构形式而 定,例如,皮囊式为3.5~32MPa (2)不同的蓄能器各有其适用的工作范围,例如,皮囊式蓄能器的皮囊强度不高,不能 承受很大的压力波动,且只能在-20~70℃的温度范围内工作 (3)皮囊式蓄能器原则上应垂直安装(油口向下),只有在空间位置受限制时才允许倾斜 或水平安装。 (4)装在管路上的蓄能器须用支板或支架固定 (5)蓄能器与管路系统之间应安装截止阀,供充气、检修时使用。蓄能器与液压泵之间 应安装单向阀,防止液压泵停车时蓄能器内储存的压力油液倒流 第二节滤油器 、功用和类型 1.功用滤油器的功用是过滤混在液压油液中的杂质,降低进入系统中油液的污染度, 保证系统正常地工作 2.类型滤油器按其滤心材料的过滤机制来分,有表面型滤油器、深度型滤油器和吸附 型滤油器三种 (1)表面型滤油器:整个过滤作用是由一个几何面来实现的。滤下的污染杂质被截留在 滤心元件靠油液上游的一面。在这里,滤心材料具有均匀的标定小孔,可以滤除比小孔尺寸 大的杂质。由于污染杂质积聚在滤心表面上,因此它很容易被阻塞住。编网式滤心、线隙式
n 值由气体工作条件决定:当蓄能器用来补偿泄漏、保持压力时,它释放能量的速度是 缓慢的,可以认为气体在等温条件下工作,n=1;当蓄能器用来大量提供油液时,它释放能 量的速度是很快的,可以认为气体在绝热条件下工作,n=1.4。 由于 VW=V1-V2,因此由式(6-1)可得: 1 1 1 2 1 1 ( ) 1 1 [( ) ( ) ] n W A A n n V P V p p = − (6-2) pA 值理论上可与 p2 相等,但为了保证系统压力为 p2 时蓄能器还有能力补偿泄漏,宜使 pA<p2,一般对折合型皮囊取 pA=(0.8~0.85)p2,波纹型皮囊取 pA=(0.6~0.65)p2。此外, 如能使皮囊工作时的容腔在其充气容腔 1/3 至 2/3 的区段内变化,就可使它更为经久耐用。 蓄能器用于吸收液压冲击时,蓄能器的容积 VA 可以近似地由其充气压力 pA、系统中允 许的最高工作压力 p1 和瞬时吸收的液体动能来确定。例如,当用蓄能器吸收管道突然关闭 时的液体动能为 ρAlυ2 /2 时,由于气体在绝热过程中压缩所吸收的能量为: [( / ) 1] 0.4 ( / ) 0.268 1 1.4 1 1 = = − − a a a v v a a v v p p p v pdv p v v dv a a 故得: 2 2 a alv v = 1 0.286 0.4 1 ( )[( )] A ( ) 1 A p p p − (6-3) 上式未考虑油液压缩性和管道弹性,式中 pA 的值常取系统工作压力的 90%。蓄能器用于 吸收液压泵压力脉动时,它的容积与蓄能器动态性能及相应管路的动态性能有关。 三、使用和安装 蓄能器在液压回路中的安放位置随其功用而不同:吸收液压冲击或压力脉动时宜放在冲 击源或脉动源近旁;补油保压时宜放在尽可能接近有关的执行元件处。 使用蓄能器须注意如下几点: (1)充气式蓄能器中应使用惰性气体(一般为氮气),允许工作压力视蓄能器结构形式而 定,例如,皮囊式为 3.5~32MPa。 (2)不同的蓄能器各有其适用的工作范围,例如,皮囊式蓄能器的皮囊强度不高,不能 承受很大的压力波动,且只能在-20~70℃的温度范围内工作。 (3)皮囊式蓄能器原则上应垂直安装(油口向下),只有在空间位置受限制时才允许倾斜 或水平安装。 (4)装在管路上的蓄能器须用支板或支架固定。 (5)蓄能器与管路系统之间应安装截止阀,供充气、检修时使用。蓄能器与液压泵之间 应安装单向阀,防止液压泵停车时蓄能器内储存的压力油液倒流。 第二节 滤 油 器 一、功用和类型 1.功用 滤油器的功用是过滤混在液压油液中的杂质,降低进入系统中油液的污染度, 保证系统正常地工作。 2.类型 滤油器按其滤心材料的过滤机制来分,有表面型滤油器、深度型滤油器和吸附 型滤油器三种。 (1)表面型滤油器:整个过滤作用是由一个几何面来实现的。滤下的污染杂质被截留在 滤心元件靠油液上游的一面。在这里,滤心材料具有均匀的标定小孔,可以滤除比小孔尺寸 大的杂质。由于污染杂质积聚在滤心表面上,因此它很容易被阻塞住。编网式滤心、线隙式
滤心属于这种类型 (2)深度型滤油器:这种滤心材料为多孔可透性材料,内部具有曲折迂回的通道。大于 表面孔径的杂质直接被截留在外表面,较小的污染杂质进入滤材内部,撞到通道壁上,由于 吸附作用而得到滤除。滤材内部曲折的通道也有利于污染杂质的沉积。纸心、毛毡、烧结金 属、陶瓷和各种纤维制品等属于这种类型 (3)吸附型滤油器:这种滤心材料把油液中的有关杂质吸附在其表面上。磁心即属于此 符号 结构滤迪器按其滤心材料的过滤机制来分,有表 类型 种。 功能 滤油器的功用是过滤混在液压油液中的杂质, 降低进入系统中油液的污染度,保证系统 作用正常地工作 油箱上各盖板、管口处都要妥善密封,防止 油液污染: 安装容易散热和组护保养 油箱要进行油温控制 常见的滤油器式样及其特点示于表6-2中
滤心属于这种类型。 (2)深度型滤油器:这种滤心材料为多孔可透性材料,内部具有曲折迂回的通道。大于 表面孔径的杂质直接被截留在外表面,较小的污染杂质进入滤材内部,撞到通道壁上,由于 吸附作用而得到滤除。滤材内部曲折的通道也有利于污染杂质的沉积。纸心、毛毡、烧结金 属、陶瓷和各种纤维制品等属于这种类型。 (3)吸附型滤油器:这种滤心材料把油液中的有关杂质吸附在其表面上。磁心即属于此 类。 常见的滤油器式样及其特点示于表 6-2 中
表6-2 常见的滤油器及其特点 类型 名称及结构简图 特点说明 1.过滤精度与铜丝网层数及网孔大小有关 在压力管路上常用100、150、200日(每 英寸长度上孔数)的铜丝网,在液压泵吸 油管路上常采用20~40目铜丝 2.压力损失不超过0.004Ma 3.结构简单,通流能力大,清洗方便,但过 滤精度低 表面型 1.滤心由绕在心架上的一层金属线组成,依 靠线间微小间隙来挡住油液中杂质的通过 2.压力损失约为0.03~0.06MPa 3.结构简单,通流能力大,过滤精度高,但滤 心材料强度低,不易清洗 4用于低压管道中,当用在液压泵吸油管上 时,它的流量规格宜选得比泵大 1.结构与线隙式相同,但滤心为平纹或波纹 的酚醛树脂或木浆微孔滤纸制成的纸心。 为了增大过滤面积,纸心常制成折叠形 2.压力损失约为0.01~0.04Pa 3.过滤精度高,但堵塞后无法清洗,必须更 换纸心4.通常用于精过滤 深度型 1.滤心由金属粉末烧结而成,利用金属颗粒 间的微孔来挡住油中杂质通过。改变金属 粉末的颗粒大小,就可以制出不同过滤精 度的滤心 2.压力损失约为0.03~0.2MPa 3.过滤精度高,滤心能承受高压,但金属颗 粒易脱落,堵塞后不易清洗 4.适用于精过滤 1.滤心由永久磁铁制成,能吸住油液中的铁 屑、铁粉、可带磁性的磨料 吸附型 磁性滤油器 2.常与其它型式滤心合起来制成复合式滤 油器 3.对加工钢铁件的机床液压系统特别适用
表 6-2 常见的滤油器及其特点 类型 名称及结构简图 特点说明 表面型 1. 过滤精度与铜丝网层数及网孔大小有关。 在压力管路上常用 100、150、200 目(每 英寸长度上孔数)的铜丝网,在液压泵吸 油管路上常采用 20~40 目铜丝网 2. 压力损失不超过 0.004Mpa 3. 结构简单,通流能力大,清洗方便,但过 滤精度低 1. 滤心由绕在心架上的一层金属线组成,依 靠线间微小间隙来挡住油液中杂质的通过 2. 压力损失约为 0.03~0.06MPa 3.结构简单,通流能力大,过滤精度高,但滤 心材料强度低,不易清洗 4.用于低压管道中,当用在液压泵吸油管上 时,它的流量规格宜选得比泵大 深度型 1. 结构与线隙式相同,但滤心为平纹或波纹 的酚醛树脂或木浆微孔滤纸制成的纸心。 为了增大过滤面积,纸心常制成折叠形 2. 压力损失约为 0.01~0.04MPa 3. 过滤精度高,但堵塞后无法清洗,必须更 换纸心 4.通常用于精过滤 1. 滤心由金属粉末烧结而成,利用金属颗粒 间的微孔来挡住油中杂质通过。改变金属 粉末的颗粒大小,就可以制出不同过滤精 度的滤心 2. 压力损失约为 0.03~0.2MPa 3. 过滤精度高,滤心能承受高压,但金属颗 粒易脱落,堵塞后不易清洗 4. 适用于精过滤 吸附型 磁性滤油器 1. 滤心由永久磁铁制成,能吸住油液中的铁 屑、铁粉、可带磁性的磨料 2. 常与其它型式滤心合起来制成复合式滤 油器 3.对加工钢铁件的机床液压系统特别适用
、滤油器的主要性能指标 1.过滤精度它表示滤油器对各种不同尺寸的污染颗粒的滤除能力,用绝对过滤精度、 过滤比和过滤效率等指标来评定 绝对过滤精度是指通过滤心的最大坚硬球状颗粒的尺寸(y),它反映了过滤材料中最大 通孔尺寸,以μ表示。它可以用试验的方法进行测定 过滤比(β,值)是指滤油器上游油液单位容积中大于某给定尺寸的颗粒数与下游油液单位容 积中大于同一尺寸的颗粒数之比,即对于某一尺寸x的颗粒来说,其过滤比β,的表达式为: Bx=N/Nd 式中:N为上游油液中大于某一尺寸x的颗粒浓度:N为下游油液中大于同一尺寸x的颗粒 浓度 从上式可看出,βx愈大,过滤精度愈高。当过滤比的数值达到75时,y即被认为是滤 油器的绝对过滤精度。过滤比能确切地反映滤油器对不同尺寸颗粒污染物的过滤能力,它已 被国际标准化组织采纳作为评定滤油器过滤精度的性能指标。一般要求系统的过滤精度要小 于运动副间隙的一半。此外,压力越高,对过滤精度要求越高。其推荐值见表6-3 过滤效率Ec可以通过下式由过滤比βx值直接换算出来: Ec=(Nu-Nd)/Nu=1-1/B (6-5) 表6-3 过滤精度推荐值表 润滑系统 工作压力 0~2.5 ≤14 14<p<21 ≥21 21 过滤精度 100 25~50 2.压降特性液压回路中的滤油器对油液流动来说是一种阻力,因而油液通过滤心时必 然要出现压力降。一般来说,在滤心尺寸和流量一定的情况下,滤心的过滤精度愈高,压力 降愈大;在流量一定的情况下,滤心的有效过滤面积愈大,压力降愈小;油液的粘度愈大, 流经滤心的压力降也愈大 滤心所允许的最大压力降,应以不致使滤心元件发生结构性破坏为原则。在高压系统中, 滤心在稳定状态下工作时承受到的仅仅是它那里的压力降,这就是为什么纸质滤心亦能在高 压系统中使用的道理。油液流经滤心时的压力降,大部分是通过试验或经验公式来确定的。 3.纳垢容量这是指滤油器在压力降达到其规定限值之前可以滤除并容纳的污染物数 量,这项性能指标可以用多次通过性试验来确定。滤油器的纳垢容量愈大,使用寿命愈长 所以它是反映滤油器寿命的重要指标。一般来说,滤心尺寸愈大,即过滤面积愈大,纳垢容 量就愈大。增大过滤面积,可以使纳垢容量至少成比例地增加 滤油器过滤面积A的表达式为: 式中:q为滤油器的额定流量(L/min):μ为油液的粘度(Pa·s):△p为压力降(Pa);a为 滤油器单位面积通过能力(L/cm),由实验确定。在20℃时,对特种滤网,a=0.003~0.006 纸质滤心,a=0.035;线隙式滤心,a=10;一般网式滤心,a=2。式(6-6)清楚地说明了过滤 面积与油液的流量、粘度、压降和滤心形式的关系 三、选用和安装 1.选用滤油器按其过滤精度(滤去杂质的颗粒大小)的不同,有粗过滤器、普通过滤器 精密过滤器和特精过滤器四种,它们分别能滤去大于100um、10~100μm、5~10μm和1~ 5um大小的杂质。 选用滤油器时,要考虑下列几点: (1)过滤精度应满足预定要求 2)能在较长时间内保持足够的通流能力
二、滤油器的主要性能指标 1.过滤精度 它表示滤油器对各种不同尺寸的污染颗粒的滤除能力,用绝对过滤精度、 过滤比和过滤效率等指标来评定。 绝对过滤精度是指通过滤心的最大坚硬球状颗粒的尺寸(y),它反映了过滤材料中最大 通孔尺寸,以μm 表示。它可以用试验的方法进行测定。 过滤比(βx 值)是指滤油器上游油液单位容积中大于某给定尺寸的颗粒数与下游油液单位容 积中大于同一尺寸的颗粒数之比,即对于某一尺寸 x 的颗粒来说,其过滤比 βx 的表达式为: βx=Nu/Nd (6-4) 式中:Nu 为上游油液中大于某一尺寸 x 的颗粒浓度;Nd 为下游油液中大于同一尺寸 x 的颗粒 浓度。 从上式可看出,βx 愈大,过滤精度愈高。当过滤比的数值达到 75 时,y 即被认为是滤 油器的绝对过滤精度。过滤比能确切地反映滤油器对不同尺寸颗粒污染物的过滤能力,它已 被国际标准化组织采纳作为评定滤油器过滤精度的性能指标。一般要求系统的过滤精度要小 于运动副间隙的一半。此外,压力越高,对过滤精度要求越高。其推荐值见表 6-3。 过滤效率 Ec 可以通过下式由过滤比 βx 值直接换算出来: Ec=(Nu-Nd)/Nu=1-1/βx (6-5) 表 6-3 过滤精度推荐值表 系统类别 润滑系统 传动系统 伺服系统 工作压力 /MPa 0~2.5 ≤14 14<p<21 ≥21 21 过滤精度 /μm 100 25~50 25 10 5 2.压降特性 液压回路中的滤油器对油液流动来说是一种阻力,因而油液通过滤心时必 然要出现压力降。一般来说,在滤心尺寸和流量一定的情况下,滤心的过滤精度愈高,压力 降愈大;在流量一定的情况下,滤心的有效过滤面积愈大,压力降愈小;油液的粘度愈大, 流经滤心的压力降也愈大。 滤心所允许的最大压力降,应以不致使滤心元件发生结构性破坏为原则。在高压系统中, 滤心在稳定状态下工作时承受到的仅仅是它那里的压力降,这就是为什么纸质滤心亦能在高 压系统中使用的道理。油液流经滤心时的压力降,大部分是通过试验或经验公式来确定的。 3.纳垢容量 这是指滤油器在压力降达到其规定限值之前可以滤除并容纳的污染物数 量,这项性能指标可以用多次通过性试验来确定。滤油器的纳垢容量愈大,使用寿命愈长, 所以它是反映滤油器寿命的重要指标。一般来说,滤心尺寸愈大,即过滤面积愈大,纳垢容 量就愈大。增大过滤面积,可以使纳垢容量至少成比例地增加。 滤油器过滤面积 A 的表达式为: A=qμ/aΔp (6-6) 式中:q 为滤油器的额定流量(L/min);μ 为油液的粘度(Pa·s);Δp 为压力降(Pa);a 为 滤油器单位面积通过能力(L/cm2 ),由实验确定。在 20℃时,对特种滤网,a=0.003~0.006; 纸质滤心,a=0.035;线隙式滤心,a=10;一般网式滤心,a=2。式(6-6)清楚地说明了过滤 面积与油液的流量、粘度、压降和滤心形式的关系。 三、选用和安装 1.选用 滤油器按其过滤精度(滤去杂质的颗粒大小)的不同,有粗过滤器、普通过滤器、 精密过滤器和特精过滤器四种,它们分别能滤去大于 100μm、10~100μm、5~10μm 和 1~ 5μm 大小的杂质。 选用滤油器时,要考虑下列几点: (1)过滤精度应满足预定要求。 (2)能在较长时间内保持足够的通流能力
(3)滤心具有足够的强度,不因液压的作用而损坏 4)滤心抗腐蚀性能好,能在规定的温度下持久地工作。 (5)滤心清洗或更换简便 因此,滤油器应根据液压系统的技术要求,按过滤精度、通流能力、工作压力、油液粘 度、工作温度等条件选定其型号 2.安装滤油器在液压系统中的安装位置通常有以下几种: (1)要装在泵的吸油口处: 泵的吸油路上一般都安装有表面型滤油器,目的是滤去较大的杂质微粒以保护液压泵, 此外滤油器的过滤能力应为泵流量的两倍以上,压力损失小于0.02MPa。 (2)安装在泵的出口油路上: 此处安装滤油器的目的是用来滤除可能侵入阀类等元件的污染物。其过滤精度应为 10~15μm,且能承受油路上的工作压力和冲击压力,压力降应小于0.35MPa。同时应安装 安全阀以防滤油器堵塞。 (3)安装在系统的回油路上:这种安装起间接过滤作用。一般与过滤器并连安装一背压 阀,当过滤器堵塞达到一定压力值时,背压阀打开 (4)安装在系统分支油路上 (5)单独过滤系统:大型液压系统可专设一液压泵和滤油器组成独立过滤回路。 液压系统中除了整个系统所需的滤油器外,还常常在一些重要元件(如伺服阀、精密节 流阀等)的前面单独安装一个专用的精滤油器来确保它们的正常工作。 第三节油箱 、功用和结构 图6-3油箱 1—吸油管2—滤油网3一盖4一回油管 一上盖6—油位计7,9—隔板8一放油阀 1.功用油箱的功用主要是储存油液,此外还起着散发油液中热量(在周围环境温度较 低的情况下则是保持油液中热量)、释出混在油液中的气体、沉淀油液中污物等作用 2.结构液压系统中的油箱有整体式和分离式两种。整体式油箱利用主机的内腔作为油 箱,这种油箱结构紧凑,各处漏油易于回收,但增加了设计和制造的复杂性,维修不便,散 热条件不好,且会使主机产生热变形。分离式油箱单独设置,与主机分开,减少了油箱发热 和液压源振对主机工作精度的影响,因此得到了普遍的采用,特别在精密机械上 油箱的典型结构如图6-3所示。由图可见,油箱内部用隔板7、9将吸油管1与回油管 4隔开。顶部、侧部和底部分别装有滤油网2、液位计6和排放污油的放油阀8。安装液压 泵及其驱动电机的安装板5则固定在油箱顶面上。 此外,近年来又出现了充气式的闭式油箱,它不同于图6-3开式油箱之处,在于油箱是 整个封闭的,顶部有一充气管,可送入0.05~0.07MPa过滤纯净的压缩空气。空气或者直接
(3)滤心具有足够的强度,不因液压的作用而损坏。 (4)滤心抗腐蚀性能好,能在规定的温度下持久地工作。 (5)滤心清洗或更换简便。 因此,滤油器应根据液压系统的技术要求,按过滤精度、通流能力、工作压力、油液粘 度、工作温度等条件选定其型号。 2.安装 滤油器在液压系统中的安装位置通常有以下几种: (1)要装在泵的吸油口处: 泵的吸油路上一般都安装有表面型滤油器,目的是滤去较大的杂质微粒以保护液压泵, 此外滤油器的过滤能力应为泵流量的两倍以上,压力损失小于 0.02MPa。 (2)安装在泵的出口油路上: 此处安装滤油器的目的是用来滤除可能侵入阀类等元件的污染物。其过滤精度应为 10~15μm,且能承受油路上的工作压力和冲击压力,压力降应小于 0.35MPa。同时应安装 安全阀以防滤油器堵塞。 (3)安装在系统的回油路上:这种安装起间接过滤作用。一般与过滤器并连安装一背压 阀,当过滤器堵塞达到一定压力值时,背压阀打开。 (4)安装在系统分支油路上。 (5)单独过滤系统:大型液压系统可专设一液压泵和滤油器组成独立过滤回路。 液压系统中除了整个系统所需的滤油器外,还常常在一些重要元件(如伺服阀、精密节 流阀等)的前面单独安装一个专用的精滤油器来确保它们的正常工作。 第三节 油 箱 一、功用和结构 图 6-3 油箱 1—吸油管 2—滤油网 3—盖 4—回油管 5—上盖 6—油位计 7,9—隔板 8—放油阀 1.功用 油箱的功用主要是储存油液,此外还起着散发油液中热量(在周围环境温度较 低的情况下则是保持油液中热量)、释出混在油液中的气体、沉淀油液中污物等作用。 2.结构 液压系统中的油箱有整体式和分离式两种。整体式油箱利用主机的内腔作为油 箱,这种油箱结构紧凑,各处漏油易于回收,但增加了设计和制造的复杂性,维修不便,散 热条件不好,且会使主机产生热变形。分离式油箱单独设置,与主机分开,减少了油箱发热 和液压源振对主机工作精度的影响,因此得到了普遍的采用,特别在精密机械上。 油箱的典型结构如图 6-3 所示。由图可见,油箱内部用隔板 7、9 将吸油管 1 与回油管 4 隔开。顶部、侧部和底部分别装有滤油网 2、液位计 6 和排放污油的放油阀 8。安装液压 泵及其驱动电机的安装板 5 则固定在油箱顶面上。 此外,近年来又出现了充气式的闭式油箱,它不同于图 6-3 开式油箱之处,在于油箱是 整个封闭的,顶部有一充气管,可送入 0.05~0.07MPa 过滤纯净的压缩空气。空气或者直接
与油液接触,或者被输入到蓄能器式的皮囊内不与油液接触。这种油箱的优点是改善了液压 泵的吸油条件,但它要求系统中的回油管、泄油管承受背压。油箱本身还须配置安全阀、电 接点压力表等元件以稳定充气压力,因此它只在特殊场合下使用。 二、设计时的注意事项 1.油箱的有效容积(油面高度为油箱高度80%时的容积)应根据液压系统发热、散热平衡 的原则来计算,这项计算在系统负载较大、长期连续工作时是必不可少的。但对于一般情况 来说,油箱的有效容积可以按液压泵的额定流量qp(L/min)估计出来。例如,适用于机床或 其它一些固定式机械的估算式为: 式中:V为油箱的有效容积①L):ξ为与系统压力有关的经验数字:低压系统ξ=2~4,中压系统ξ=5~7, 高压系统ξ=10~12 2.吸油管和回油管应尽量相距远些,两管之间要用隔板隔开,以增加油液循环距离,使 液有足够的时间分离气泡,沉淀杂质,消散热量。隔板高度最好为箱内油面高度的3/4。吸 油管入口处要装粗滤油器。精滤油器与回油管管端在油面最低时仍应没在油中,防止吸油时 卷吸空气或回油冲入油箱时搅动油面而混入气泡。回油管管端宜斜切45°,以增大出油口 截面积,减慢岀口处油流速度,此外,应使回油管斜切口面对箱壁,以利油液散热。当回油 管排回的油量很大时,宜使它出口处高出油面,向一个带孔或不带孔的斜槽(倾角为5 15°)排油,使油流散开,一方面减慢流速,另一方面排走油液中空气。减慢回油流速、减 少它的冲击搅拌作用,也可以采取让它通过扩散室的办法来达到。泄油管管端亦可斜切并面 壁,但不可没入油中 管端与箱底、箱壁间距离均不宜小于管径的3倍。粗滤油器距箱底不应小于20m 3.为了防止油液污染,油箱上各盖板、管口处都要妥善密封。注油器上要加滤油网。防 止油箱出现负压而设置的通气孔上须装空气滤清器。空气滤清器的容量至少应为液压泵额定 流量的2倍。油箱内回油集中部分及清污口附近宜装设一些磁性块,以去除油液中的铁屑和 带磁性颗粒。 4.为了易于散热和便于对油箱进行搬移及维护保养,按GB3766-83规定,箱底离地至 少应在150m以上。箱底应适当倾斜,在最低部位处设置堵塞或放油阀,以便排放污油。按 照GB3766—83规定,箱体上注油口的近旁必须设置液位计。滤油器的安装位置应便于装拆。 箱内各处应便于清洗 5.油箱中如要安装热交换器,必须考虑好它的安装位置,以及测温、控制等措施。 6.分离式油箱一般用2.5~4mm钢板焊成。箱壁愈薄,散热愈快〖ZW(Y〗有资料建议100L 容量的油箱箱壁厚度取1.5m,400L以下的取3mm,40OL以上的取6mm,箱底厚度大于箱壁, 箱盖厚度应为箱壁的4倍。〖Zw)〗。大尺寸油箱要加焊角板、筋条,以增加刚性。当液压泵 及其驱动电机和其它液压件都要装在油箱上时,油箱顶盖要相应地加厚 7.油箱内壁应涂上耐油防锈的涂料。外壁如涂上一层极薄的黑漆(不超过0.025mm 度),会有很好的辐射冷却效果。铸造的油箱内壁一般只进行喷砂处理,不涂漆 第四节热交换器 液压系统的工作温度一般希望保持在30~50℃的范围之内,最高不超过65℃,最低不 低于15℃。液压系统如依靠自然冷却仍不能使油温控制在上述范围内时,就须安装冷却器 反之,如环境温度太低无法使液压泵启动或正常运转时,就须安装加热器。 、冷却器 液压系统中的冷却器,最简单的是蛇形管冷却器(图6-4),它直接裝在油箱内,冷却水 从蛇形管内部通过,带走油液中热量。这种冷却器结构简单,但冷却效率低,耗水量大
与油液接触,或者被输入到蓄能器式的皮囊内不与油液接触。这种油箱的优点是改善了液压 泵的吸油条件,但它要求系统中的回油管、泄油管承受背压。油箱本身还须配置安全阀、电 接点压力表等元件以稳定充气压力,因此它只在特殊场合下使用。 二、设计时的注意事项 1.油箱的有效容积(油面高度为油箱高度 80%时的容积)应根据液压系统发热、散热平衡 的原则来计算,这项计算在系统负载较大、长期连续工作时是必不可少的。但对于一般情况 来说,油箱的有效容积可以按液压泵的额定流量 qp(L/min)估计出来。例如,适用于机床或 其它一些固定式机械的估算式为: V=ξqp (6-7) 式中:V 为油箱的有效容积(L);ξ 为与系统压力有关的经验数字:低压系统 ξ=2~4,中压系统 ξ=5~7, 高压系统 ξ=10~12。 2.吸油管和回油管应尽量相距远些,两管之间要用隔板隔开,以增加油液循环距离,使 液有足够的时间分离气泡,沉淀杂质,消散热量。隔板高度最好为箱内油面高度的 3/4。吸 油管入口处要装粗滤油器。精滤油器与回油管管端在油面最低时仍应没在油中,防止吸油时 卷吸空气或回油冲入油箱时搅动油面而混入气泡。回油管管端宜斜切 45°,以增大出油口 截面积,减慢出口处油流速度,此外,应使回油管斜切口面对箱壁,以利油液散热。当回油 管排回的油量很大时,宜使它出口处高出油面,向一个带孔或不带孔的斜槽(倾角为 5°~ 15°)排油,使油流散开,一方面减慢流速,另一方面排走油液中空气。减慢回油流速、减 少它的冲击搅拌作用,也可以采取让它通过扩散室的办法来达到。泄油管管端亦可斜切并面 壁,但不可没入油中。 管端与箱底、箱壁间距离均不宜小于管径的 3 倍。粗滤油器距箱底不应小于 20mm。 3.为了防止油液污染,油箱上各盖板、管口处都要妥善密封。注油器上要加滤油网。防 止油箱出现负压而设置的通气孔上须装空气滤清器。空气滤清器的容量至少应为液压泵额定 流量的 2 倍。油箱内回油集中部分及清污口附近宜装设一些磁性块,以去除油液中的铁屑和 带磁性颗粒。 4.为了易于散热和便于对油箱进行搬移及维护保养,按 GB3766—83 规定,箱底离地至 少应在 150mm 以上。箱底应适当倾斜,在最低部位处设置堵塞或放油阀,以便排放污油。按 照 GB3766—83 规定,箱体上注油口的近旁必须设置液位计。滤油器的安装位置应便于装拆。 箱内各处应便于清洗。 5.油箱中如要安装热交换器,必须考虑好它的安装位置,以及测温、控制等措施。 6.分离式油箱一般用 2.5~4mm 钢板焊成。箱壁愈薄,散热愈快〖ZW(Y〗有资料建议 100L 容量的油箱箱壁厚度取 1.5mm,400L 以下的取 3mm,400L 以上的取 6mm,箱底厚度大于箱壁, 箱盖厚度应为箱壁的 4 倍。〖ZW)〗。大尺寸油箱要加焊角板、筋条,以增加刚性。当液压泵 及其驱动电机和其它液压件都要装在油箱上时,油箱顶盖要相应地加厚。 7.油箱内壁应涂上耐油防锈的涂料。外壁如涂上一层极薄的黑漆(不超过 0.025mm 厚 度),会有很好的辐射冷却效果。铸造的油箱内壁一般只进行喷砂处理,不涂漆。 第四节 热 交 换 器 液压系统的工作温度一般希望保持在 30~50℃的范围之内,最高不超过 65℃,最低不 低于 15℃。液压系统如依靠自然冷却仍不能使油温控制在上述范围内时,就须安装冷却器; 反之,如环境温度太低无法使液压泵启动或正常运转时,就须安装加热器。 一、冷却器 液压系统中的冷却器,最简单的是蛇形管冷却器(图 6-4),它直接装在油箱内,冷却水 从蛇形管内部通过,带走油液中热量。这种冷却器结构简单,但冷却效率低,耗水量大
6-4蛇形管冷却器 液压系统中用得较多的冷却器是强制对流式多管冷却器(图6-5)。油液从进油口5流 入,从出油口3流出:冷却水从进水口6流入,通过多根水管后由出水口1流出。油液在水 管外部流动时,它的行进路线因冷却器内设置了隔板而加长,因而增加了热交换效果。近来 出现一种翅片管式冷却器,水管外面增加了许多横向或纵向的散热翅片,大大扩大了散热面 积和热交换效果。图6-6所示为翅片管式冷却器的一种形式,它是在圆管或椭圆管外嵌套上 许多径向翅片,其散热面积可达光滑管的8~10倍。椭圆管的散热效果一般比圆管更好 图6-5多管式冷却器 图6-6翅片管式冷却器 l一出水口2—端盖3一出油口4—隔板5一端盖6一进水口 液压系统亦可以用汽车上的风冷式散热器来进行冷却。这种用风扇鼓风带走流入散热器 内油液热量的装置不须另设通水管路,结构简单,价格低廉,但冷却效果较水冷式差。 冷却器一般应安放在回油管或低压管路上。如溢流阀的出口,系统的主回流路上或单独 的冷却系统 冷却器所造成的压力损失一般约为0.01~0.1MP 、加热器 液压系统的加热一般常采用结构简单、能按需要自动调节最高和最低温度的电加热器。 这种加热器的安装方式是用法兰盘横装在箱壁上,发热部分全部浸在油液内。加热器应安装 在箱内油液流动处,以有利于热量的交换。由于油液是热的不良导体,单个加热器的功率容 量不能太大,以免其周围油液过度受热后发生变质现象。 第五节管 件 一、油管 液压系统中使用的油管种类很多,有钢管、铜管、尼龙管、塑料管、橡胶管等,须按照 安装位置、工作环境和工作压力来正确选用。油管的特点及其适用范围如表6-4所示。 表6-4液压系统中使用的油管 特点和适用场 能承受高压,价格低廉,耐油,抗腐蚀,刚性好,但装配时不能任意 硬钢管弯曲:常在装拆方便处用作压力管道,中、高压用无缝管,低压用焊 接管合 管\紫铜管 易弯曲成各种形状,但承压能力一般不超过6.5~10MPa,抗振能力较 弱,又易使油液氧化:;通常用在液压装置内配接不便之处
6-4 蛇形管冷却器 液压系统中用得较多的冷却器是强制对流式多管冷却器(图 6-5)。油液从进油口 5 流 入,从出油口 3 流出;冷却水从进水口 6 流入,通过多根水管后由出水口 1 流出。油液在水 管外部流动时,它的行进路线因冷却器内设置了隔板而加长,因而增加了热交换效果。近来 出现一种翅片管式冷却器,水管外面增加了许多横向或纵向的散热翅片,大大扩大了散热面 积和热交换效果。图 6-6 所示为翅片管式冷却器的一种形式,它是在圆管或椭圆管外嵌套上 许多径向翅片,其散热面积可达光滑管的 8~10 倍。椭圆管的散热效果一般比圆管更好。 图 6-5 多管式冷却器 图 6-6 翅片管式冷却器 1—出水口 2—端盖 3—出油口 4—隔板 5—端盖 6—进水口 液压系统亦可以用汽车上的风冷式散热器来进行冷却。这种用风扇鼓风带走流入散热器 内油液热量的装置不须另设通水管路,结构简单,价格低廉,但冷却效果较水冷式差。 冷却器一般应安放在回油管或低压管路上。如溢流阀的出口,系统的主回流路上或单独 的冷却系统。 冷却器所造成的压力损失一般约为 0.01~0.1MPa。 二、加热器 液压系统的加热一般常采用结构简单、能按需要自动调节最高和最低温度的电加热器。 这种加热器的安装方式是用法兰盘横装在箱壁上,发热部分全部浸在油液内。加热器应安装 在箱内油液流动处,以有利于热量的交换。由于油液是热的不良导体,单个加热器的功率容 量不能太大,以免其周围油液过度受热后发生变质现象。 第五节 管 件 一、油管 液压系统中使用的油管种类很多,有钢管、铜管、尼龙管、塑料管、橡胶管等,须按照 安装位置、工作环境和工作压力来正确选用。油管的特点及其适用范围如表 6-4 所示。 表 6-4 液压系统中使用的油管 种 类 特点和适用场 硬 管 钢管 能承受高压,价格低廉,耐油,抗腐蚀,刚性好,但装配时不能任意 弯曲;常在装拆方便处用作压力管道,中、高压用无缝管,低压用焊 接管合 紫铜管 易弯曲成各种形状,但承压能力一般不超过 6.5~10MPa,抗振能力较 弱,又易使油液氧化;通常用在液压装置内配接不便之处
尼龙管乳白色半透明,加热后可以随意弯曲成形或扩口,冷却后又能定形不 变,承压能力因材质而异,自2.5MPa至8MPa不等 软 塑料管 质轻耐油,价格便宜,装配方便,但承压能力低,长期使用会变质 化,只宜用作压力低于0.5Pa的回油管、泄油管等 高压管由耐油橡胶夹几层钢丝编织网制成,钢丝网层数越多,耐压越 管橡胶管高,价昂,用作中、高压系统中两个相对运动件之间的压力管道 低压管由耐油橡胶夹帆布制成,可用作回油管道 油管的规格尺寸(管道内径和壁厚)可由式(6-8)、式(6-9)算出d、δ后,查阅有关的标 准选定 d=2,q o pdn (6-9) 式中:d为油管内径:;q为管内流量;ⅴ为管中油液的流速,吸油管取0.5~1.5m/s,高 压管取2.5~5m/s(压力高的取大值,低的取小值,例如:压力在6MPa以上的取5m/s,在3 6MPa之间的取4m/s,在3MPa以下的取2.5~3m/s:;管道较长的取小值,较短的取大值:油 液粘度大时取小值),回油管取1.5~2.5m/s,短管及局部收缩处取5~7m/s:δ为油管壁 厚;p为管内工作压力:n为安全系数,对钢管来说,p17.5MPa时取n=4:σ为管道材料的抗拉强度。 油管的管径不宜选得过大,以免使液压装置的结构庞大;但也不能选得过小,以免使管 内液体流速加大,系统压力损失增加或产生振动和噪声,影响正常工作 在保证强度的情况下,管壁可尽量选得薄些。薄壁易于弯曲,规格较多,装接较易,采 用它可减少管系接头数目,有助于解决系统泄漏问题。 、接头 管接头是油管与油管、油管与液压件之间的可拆式连接件,它必须具有装拆方便、连接 牢固、密封可靠、外形尺寸小、通流能力大、压降小、工艺性好等各项条件。 管接头的种类很多,其规格品种可查阅有关手册。液压系统中油管与管接头的常见连接 方式如表6-5所示。管路旋入端用的连接螺纹采用国家标准米制锥螺纹(ZM和普通细牙螺纹 (M) 锥螺纹依靠自身的锥体旋紧和采用聚四氟乙烯等进行密封,广泛用于中、低压液压系统 细牙螺纹密封性好,常用于高压系统,但要采用组合垫圈或O形圈进行端面密封,有时也可 用紫铜垫圈。 表6-5液压系统中常用的管接头
软 管 尼龙管 乳白色半透明,加热后可以随意弯曲成形或扩口,冷却后又能定形不 变,承压能力因材质而异,自 2.5MPa 至 8MPa 不等 塑料管 质轻耐油,价格便宜,装配方便,但承压能力低,长期使用会变质老 化,只宜用作压力低于 0.5MPa 的回油管、泄油管等 橡胶管 高压管由耐油橡胶夹几层钢丝编织网制成,钢丝网层数越多,耐压越 高,价昂,用作中、高压系统中两个相对运动件之间的压力管道 低压管由耐油橡胶夹帆布制成,可用作回油管道 油管的规格尺寸(管道内径和壁厚)可由式(6-8)、式(6-9)算出 d、δ 后,查阅有关的标 准选定。 2 q d v = (6-8) 2 b pdn = (6-9) 式中:d 为油管内径;q 为管内流量;v 为管中油液的流速,吸油管取 0.5~1.5m/s,高 压管取 2.5~5m/s(压力高的取大值,低的取小值,例如:压力在 6MPa 以上的取 5m/s,在 3~ 6MPa 之间的取 4m/s,在 3MPa 以下的取 2.5~3m/s;管道较长的取小值,较短的取大值;油 液粘度大时取小值),回油管取 1.5~2.5m/s,短管及局部收缩处取 5~7m/s;δ 为油管壁 厚;p 为管内工作压力;n 为安全系数,对钢管来说,p<7MPa 时取 n=8,7MPa<p<17.5MPa 时取 n=6,p>17.5MPa 时取 n=4;σb 为管道材料的抗拉强度。 油管的管径不宜选得过大,以免使液压装置的结构庞大;但也不能选得过小,以免使管 内液体流速加大,系统压力损失增加或产生振动和噪声,影响正常工作。 在保证强度的情况下,管壁可尽量选得薄些。薄壁易于弯曲,规格较多,装接较易,采 用它可减少管系接头数目,有助于解决系统泄漏问题。 二、接头 管接头是油管与油管、油管与液压件之间的可拆式连接件,它必须具有装拆方便、连接 牢固、密封可靠、外形尺寸小、通流能力大、压降小、工艺性好等各项条件。 管接头的种类很多,其规格品种可查阅有关手册。液压系统中油管与管接头的常见连接 方式如表 6-5 所示。管路旋入端用的连接螺纹采用国家标准米制锥螺纹(ZM)和普通细牙螺纹 (M)。 锥螺纹依靠自身的锥体旋紧和采用聚四氟乙烯等进行密封,广泛用于中、低压液压系统; 细牙螺纹密封性好,常用于高压系统,但要采用组合垫圈或 O 形圈进行端面密封,有时也可 用紫铜垫圈。 表 6-5 液压系统中常用的管接头