第三章液压动力元件(液压泵) 液压动力元件起着向系统提供动力源的作用,是系统不可缺少的核心元件。液压系统 是以液压泵作为系统提供一定的流量和压力的动力元件,液压泵将原动机(电动机或内燃机) 输出的机械能转换为工作液体的压力能,是一种能量转换装置 第一节液压泵的概述 、液压泵的工作原理及特点 液压泵和液压马达是液压传动系统中的能量转换元件,液压泵由原动机驱动,把输入 的机械能转换为油液的压力能,再以压力、流量的形式输入到系统中去,它是液压传动的心 脏,也是液压系统的动力源 在液压系统中,液压泵和液质马达都是赛积式的,依策容积变化进行作 1.液压泵的工作原理 图3-1液压泵工作原理图 液压泵都是依靠密封容积变化的原理来进行工作的,故一般称为容积式液压泵,图 所示的是一单柱塞液压泵的工作原理图,图中柱塞2装在缸体3中形成一个密封容积a,柱 塞在弹簧4的作用下始终压紧在偏心轮1上。原动机驱动偏心轮1旋转使柱塞2作往复运动, 使密封容积a的大小发生周期性的交替变化。当a有小变大时就形成部分真空,使油箱中油 液在大气压作用下,经吸油管顶开单向阀6进入油箱a而实现吸油:反之,当a由大变小时, 腔中吸满的油液将顶开单向阀5流入系统而实现压油。这样液压泵就将原动机输入的机械 能转换成液体的压力能,原动机驱动偏心轮不断旋转,液压泵就不断地吸油和压油。 2.液压泵的特点 单柱塞液压泵具有一切容积式液压泵的基本特点 (1)具有若无个蜜封具又可以周期性变化间。液压泵输出流量与此空间的容积变化量 和单位时间内的变化次数成正比,与其他因素无关。这是容积式液压泵的一个重要特性 (2)油箱肉液俠的绝对厌力必须惧箦于或大于太气质力。这是容积式液压泵能够吸入油 液的外部条件。因此,为保证液压泵正常吸油,油箱必须与大气相通,或采用密闭的充压油 相 (3)具有梖应的配流机枃,将吸油腔和排液腔隔开,保证液压泵有规律地、连续地吸、 排液体。液压泵的结构原理不同,其配油机构也不相同。如图3-1中的单向阀5、6就是配 油机构 容积式液压泵中的油腔处于吸油时称为吸油腔。吸油腔的压力决定于吸油高度和吸油管
第三章 液压动力元件(液压泵) 液压动力元件起着向系统提供动力源的作用,是系统不可缺少的核心元件。液压系统 是以液压泵作为系统提供一定的流量和压力的动力元件,液压泵将原动机(电动机或内燃机) 输出的机械能转换为工作液体的压力能,是一种能量转换装置。 第一节 液压泵的概述 一、液压泵的工作原理及特点 液压泵和液压马达是液压传动系统中的能量转换元件,液压泵由原动机驱动,把输入 的机械能转换为油液的压力能,再以压力、流量的形式输入到系统中去,它是液压传动的心 脏,也是液压系统的动力源。 在液压系统中,液压泵和液压马达都是容积式的,依靠容积变化进行工作。 1.液压泵的工作原理 图 3—1 液压泵工作原理图 液压泵都是依靠密封容积变化的原理来进行工作的,故一般称为容积式液压泵,图 3-1 所示的是一单柱塞液压泵的工作原理图,图中柱塞 2 装在缸体 3 中形成一个密封容积 a,柱 塞在弹簧 4 的作用下始终压紧在偏心轮 1 上。原动机驱动偏心轮1 旋转使柱塞 2 作往复运动, 使密封容积 a 的大小发生周期性的交替变化。当 a 有小变大时就形成部分真空,使油箱中油 液在大气压作用下,经吸油管顶开单向阀 6 进入油箱 a 而实现吸油;反之,当 a 由大变小时, a 腔中吸满的油液将顶开单向阀 5 流入系统而实现压油。这样液压泵就将原动机输入的机械 能转换成液体的压力能,原动机驱动偏心轮不断旋转,液压泵就不断地吸油和压油。 2.液压泵的特点 单柱塞液压泵具有一切容积式液压泵的基本特点: (1)具有若干个密封且又可以周期性变化空间。液压泵输出流量与此空间的容积变化量 和单位时间内的变化次数成正比,与其他因素无关。这是容积式液压泵的一个重要特性。 (2)油箱内液体的绝对压力必须恒等于或大于大气压力。这是容积式液压泵能够吸入油 液的外部条件。因此,为保证液压泵正常吸油,油箱必须与大气相通,或采用密闭的充压油 箱。 (3)具有相应的配流机构,将吸油腔和排液腔隔开,保证液压泵有规律地、连续地吸、 排液体。液压泵的结构原理不同,其配油机构也不相同。如图 3-1 中的单向阀 5、6 就是配 油机构。 容积式液压泵中的油腔处于吸油时称为吸油腔。吸油腔的压力决定于吸油高度和吸油管
路的阻力,吸油高度过髙或吸油管路阻力太大,会使吸油腔真空度过高而影响液压泵的自吸 能力:油腔处于压油时称为压油腔,压油腔的压力则取决于外负载和排油管路的压力损失, 从理论上讲排油压力与液压泵的流量无关。 容积式液压泵排油的理论流量取决于液压泵的有关几何尺寸和转速,而与排油压力无 关。但排油压力会影响泵的内泄露和油液的压缩量,从而影响泵的实际输出流量,所以液压 泵的实际输出流量随排油压力的升高而降低 液压泵按其在单位时间内所能输出的油液的体积是否可调节而分为定量泵和变量泵两 类:按结构形式可分为齿轮式、叶片式和柱塞式三大类。 、液压泵的主要性能参数 1.压力 (1)工作压力。液压泵实际工作时的输出压力称为工作压力。作质力的大小取决于处 负载的太小和排油管路上的厌力损失而与液压泵的流量无关 额定压力。液压泵在正常工作条件下,按试验标准规定连续运转的最高压力称为液压 泵的额定压力 (3)最高允许压力。在超过额定压力的条件下,根据试验标准规定,允许液压泵短暂运行 的最高压力值,称为液压泵的最高允许压力 2.排量和流量 (1)排量V。液压泵每转一周,由其密封容积几何尺寸变化计算而得的排出液体的体积叫 液压泵的排量。排量可调节的液压泵称为变量泵;排量为常数的液压泵则称为定量泵。 (2)理论流量q。理论流量是指在不考虑液压泵的泄漏流量的情况下,在单位时间内所排 出的液体体积的平均值。显然,如果液压泵的排量为V,其主轴转速为n,则该液压泵的理论流 量q为: q (3-1) (3)实际流量q。液压泵在某一具体工况下,单位时间内所排出的液体体积称为实际流量, 它等于理论流量q减去泄漏流量Δq,即: q=q1-△g (4)额定流量q。液压泵在正常工作条件下,按试验标准规定(如在额定压力和额定转速 下)必须保证的流量。 3.功率和效率 (1)液压泵的功率损失。液压泵的功率损失有容积损失和机械损失两部分 ①容积损失。容积损失是指液压泵流量上的损失,液压泵的实际输出流量总是小于其 理论流量,其主要原因是由于液压泵内部高压腔的泄漏、油液的压缩以及在吸油过程中由于 吸油阻力太大、油液粘度大以及液压泵转速高等原因而导致油液不能全部充满密封工作腔 液压泵的容积损失用容积效率来表示,它等于液压泵的实际输出流量q与其理论流量q之 n=9=9-=1- q q q (3-3) 因此液压泵的实际输出流量q为 g=qn,=vnn (3-4) 式中:V为液压泵的排量(m/r):n为液压泵的转速(r/s) 液压泵的容积效率随着液压泵工作压力的增大而减小,且随液压泵的结构类型不同而异, 但恒小于1。 ②机械损失。机械损失是指液压泵在转矩上的损失。液压泵的实际输入转矩T。总是大 于理论上所需要的转矩T,其主要原因是由于液压泵体内相对运动部件之间因机械摩擦而引 起的摩擦转矩损失以及液体的粘性而引起的摩擦损失。液压泵的机械损失用机械效率表示, 它等于液压泵的理论转矩T与实际输入转矩T之比,设转矩损失为△T,则液压泵的机械效率
路的阻力,吸油高度过高或吸油管路阻力太大,会使吸油腔真空度过高而影响液压泵的自吸 能力;油腔处于压油时称为压油腔,压油腔的压力则取决于外负载和排油管路的压力损失, 从理论上讲排油压力与液压泵的流量无关。 容积式液压泵排油的理论流量取决于液压泵的有关几何尺寸和转速,而与排油压力无 关。但排油压力会影响泵的内泄露和油液的压缩量,从而影响泵的实际输出流量,所以液压 泵的实际输出流量随排油压力的升高而降低。 液压泵按其在单位时间内所能输出的油液的体积是否可调节而分为定量泵和变量泵两 类;按结构形式可分为齿轮式、叶片式和柱塞式三大类。 二、液压泵的主要性能参数 1.压力 (1)工作压力。液压泵实际工作时的输出压力称为工作压力。工作压力的大小取决于外 负载的大小和排油管路上的压力损失,而与液压泵的流量无关。 (2)额定压力。液压泵在正常工作条件下,按试验标准规定连续运转的最高压力称为液压 泵的额定压力。 (3)最高允许压力。在超过额定压力的条件下,根据试验标准规定,允许液压泵短暂运行 的最高压力值,称为液压泵的最高允许压力。 2.排量和流量 (1)排量 V。液压泵每转一周,由其密封容积几何尺寸变化计算而得的排出液体的体积叫 液压泵的排量。排量可调节的液压泵称为变量泵;排量为常数的液压泵则称为定量泵。 (2)理论流量 qi。理论流量是指在不考虑液压泵的泄漏流量的情况下,在单位时间内所排 出的液体体积的平均值。显然,如果液压泵的排量为 V,其主轴转速为 n,则该液压泵的理论流 量 qi 为: i q Vn = (3-1) (3)实际流量 q。液压泵在某一具体工况下,单位时间内所排出的液体体积称为实际流量, 它等于理论流量 qi 减去泄漏流量 Δq,即: i q q q = − (3-2) (4)额定流量 qn。液压泵在正常工作条件下,按试验标准规定(如在额定压力和额定转速 下)必须保证的流量。 3.功率和效率 (1)液压泵的功率损失。液压泵的功率损失有容积损失和机械损失两部分: ①容积损失。容积损失是指液压泵流量上的损失,液压泵的实际输出流量总是小于其 理论流量,其主要原因是由于液压泵内部高压腔的泄漏、油液的压缩以及在吸油过程中由于 吸油阻力太大、油液粘度大以及液压泵转速高等原因而导致油液不能全部充满密封工作腔。 液压泵的容积损失用容积效率来表示,它等于液压泵的实际输出流量 q 与其理论流量 qi 之比 即: i i i i i q q q q q q q = − − = = 1 (3-3) 因此液压泵的实际输出流量 q 为 i v v q q Vn = = (3-4) 式中:V 为液压泵的排量(m3 /r);n 为液压泵的转速(r/s)。 液压泵的容积效率随着液压泵工作压力的增大而减小,且随液压泵的结构类型不同而异, 但恒小于 1。 ②机械损失。机械损失是指液压泵在转矩上的损失。液压泵的实际输入转矩 T0 总是大 于理论上所需要的转矩 Ti,其主要原因是由于液压泵体内相对运动部件之间因机械摩擦而引 起的摩擦转矩损失以及液体的粘性而引起的摩擦损失。液压泵的机械损失用机械效率表示, 它等于液压泵的理论转矩Ti与实际输入转矩T0之比,设转矩损失为ΔT,则液压泵的机械效率 为:
T;1 (2)液压泵的功率 ①输入功率P。液压泵的输入功率是指作用在液压泵主轴上的机械功率,当输入转矩为 T0,角速度为ω时,有: pi (3-6) ②输出功率P。。液压泵的输出功率是指液压泵在工作过程中的实际吸、压油口间的压差△p 和输出流量q的乘积,即: p=Apq (3-7) 式中:△p为液压泵吸、压油口之间的压力差(N/m);q为液压泵的实际输出流量(m/s);p为液压泵的输出 功率N·m/s或W)。 在实际的计算中,若油箱通大气,液压泵吸、压油的压力差往往用液压泵出口压力p代 入 (3)液压泵的总效率。液压泵的总效率是指液压泵的实际输出功率与其输入功率的比值, p Apq Anqiu P: To To-,nn, 其中Δpq/ω为理论输入转矩T。 由式(3-8)可知,液压泵的总效率等于其容积效率与机械效率的乘积,所以液压泵的输 入功率也可写成 P 7 液压泵的各个参数和压力之间的关系如图3-2所示 图3-2液压泵的特性曲线 第二节齿轮泵 齿轮泵是液压系统中广泛采用的一种液压泵,其主要特点是结构简单,制造方便,价格 低廉,体积小,重量轻,自吸性能好,对油液污染不敏感,工作可靠:其主要缺点是流量和 压力脉动大,噪声大,排量不可调。它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮 泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例来剖析齿轮泵
l i m T T T T + = = 1 1 0 (2)液压泵的功率。 ①输入功率 Pi。液压泵的输入功率是指作用在液压泵主轴上的机械功率,当输入转矩为 T0,角速度为 ω 时,有: i 0 p T = (3-6) ②输出功率 Po。液压泵的输出功率是指液压泵在工作过程中的实际吸、压油口间的压差 Δp 和输出流量 q 的乘积,即: p pq = (3-7) 式中:Δp 为液压泵吸、压油口之间的压力差(N/m2 );q 为液压泵的实际输出流量(m3 /s);p 为液压泵的输出 功率(N·m/s 或 W)。 在实际的计算中,若油箱通大气,液压泵吸、压油的压力差往往用液压泵出口压力 p 代 入。 (3)液压泵的总效率。液压泵的总效率是指液压泵的实际输出功率与其输入功率的比值, 即: v m m i i v i T pq T pq p p = = = = 0 (3-8) 其中Δpqi/ω为理论输入转矩 Ti。 由式(3-8)可知,液压泵的总效率等于其容积效率与机械效率的乘积,所以液压泵的输 入功率也可写成: i pq P = (3-9) 液压泵的各个参数和压力之间的关系如图 3-2 所示。 图 3-2 液压泵的特性曲线 第二节 齿轮泵 齿轮泵是液压系统中广泛采用的一种液压泵,其主要特点是结构简单,制造方便,价格 低廉,体积小,重量轻,自吸性能好,对油液污染不敏感,工作可靠;其主要缺点是流量和 压力脉动大,噪声大,排量不可调。它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮 泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例来剖析齿轮泵
、齿轮泵的工作原理和结构 齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7 泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和 泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔 两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋 图3-3外啮合型齿轮泵工作原理 CB-B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右 侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退岀齿间,使密封容积増大,形成局部真空,油箱 中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿 间的油液被带到另一侧,进入压油腔。这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部 分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开, 起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密 封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油 这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图 3-3。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适 当间隙(轴向间隙),对小流量泵轴向间隙为0.0250.04m,大流量泵为0.04^0.06m。齿 顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又 和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径 向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取0.130.16mm 为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端 面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的 小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑 了滚针轴承
一、齿轮泵的工作原理和结构 齿轮泵的工作原理如图 3-3 所示,它是分离三片式结构,三片是指泵盖 4,8 和泵体 7。 泵体 7 内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮 6,这对齿轮与两端盖和 泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。 两齿轮分别用键固定在由滚针轴承支承的主动轴 12 和从动轴 15 上,主动轴由电动机带动旋 转。 图 3-3 外啮合型齿轮泵工作原理 CB—B 齿轮泵的结构如图 3-4 所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右 侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱 中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿 间的油液被带到另一侧,进入压油腔。这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部 分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开, 起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密 封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油, 这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销 17 定位,用 6 只螺钉固紧如图 3-3。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适 当间隙(轴向间隙),对小流量泵轴向间隙为 0.025~0.04mm,大流量泵为 0.04~0.06mm。齿 顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又 和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径 向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取 0.13~0.16mm。 为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端 面上开有油封卸荷槽 16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的 小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑 了滚针轴承
图3-4CB-B齿轮泵的结构 1-轴承外环2-堵头3-滚子4后泵盖5-键6-齿轮7-泵体8-前泵盖9螺钉10-压环 l1-密封环12-主动轴13-键14-泻油孔15-从动轴16-泻油槽17-定位销 二、齿轮泵的流量计算 齿轮泵的排量V相当于一对齿轮所有齿谷容积之和,假如齿谷容积大致等于轮齿的体积 那么齿轮泵的排量等于一个齿轮的齿谷容积和轮齿容积体积的总和,即相当于以有效齿高 (h=2m)和齿宽构成的平面所扫过的环形体积,即 dHb=2TEm'B 式中:D为齿轮分度圆直径,D=mz(cm);h为有效齿高,h=2m(cm):B为齿轮宽(cm);m为齿轮 模数(cm);z为齿数 实际上齿谷的容积要比轮齿的体积稍大,故上式中的π常以3.33代替,则式(3-10)可写 I=6.66m2B 齿轮泵的流量q(1/min)为: q=666m2Bmn×10-3 (3-12) 式中:n为齿轮泵转速(rpm);n,为齿轮泵的容积效率 实际上齿轮泵的输油量是有脉动的,故式(3-12)所表示的是泵的平均输油量。 从上面公式可以看出流量和几个主要参数的关系为 (1)输油量与齿轮模数m的平方成正比 (2)在泵的体积一定时,齿数少,模数就大,故输油量增加,但流量脉动大;齿数增加时, 模数就小,输油量减少,流量脉动也小。用于机床上的低压齿轮泵,取z=13~19,而中高压齿 轮泵,取2=6~14,齿数z<14时,要进行修正。 (3)输油量和齿宽B、转速n成正比。一般齿宽B=(6~10m;转速n为750r/min:100min l5rmin,转速过高,会造成吸油不足,转速过低,泵也不能正常工作。一般齿轮的最大圆周 速度不应大于5~6m/s。 三、齿轮泵存在的问题(结构特点 1、齿轮泵的困油问题 齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿轮尚未 脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对齿轮 的齿向啮合线之间形成了一个封闭容积,一部分油液也就被困在这一封闭容积中(见图
图 3-4 CB—B 齿轮泵的结构 1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体 8-前泵盖 9-螺钉 10-压环 11-密封环 12-主动轴 13-键 14-泻油孔 15-从动轴 16-泻油槽 17-定位销 二、齿轮泵的流量计算 齿轮泵的排量 V 相当于一对齿轮所有齿谷容积之和,假如齿谷容积大致等于轮齿的体积, 那么齿轮泵的排量等于一个齿轮的齿谷容积和轮齿容积体积的总和,即相当于以有效齿高 (h=2m)和齿宽构成的平面所扫过的环形体积,即: 2 V DhB zm B = = 2 (3-10) 式中:D 为齿轮分度圆直径,D=mz(cm);h 为有效齿高,h=2m(cm);B 为齿轮宽(cm);m 为齿轮 模数(cm);z 为齿数。 实际上齿谷的容积要比轮齿的体积稍大,故上式中的π常以3.33代替,则式(3-10)可写 成: 2 V zm B = 6.66 (3-11) 齿轮泵的流量 q(1/min)为: 2 3 6.66 10 v q zm Bn − = (3-12) 式中:n 为齿轮泵转速(rpm);ηv 为齿轮泵的容积效率。 实际上齿轮泵的输油量是有脉动的,故式(3-12)所表示的是泵的平均输油量。 从上面公式可以看出流量和几个主要参数的关系为: (1)输油量与齿轮模数 m 的平方成正比。 (2)在泵的体积一定时,齿数少,模数就大,故输油量增加,但流量脉动大;齿数增加时, 模数就小,输油量减少,流量脉动也小。用于机床上的低压齿轮泵,取 z=13~19,而中高压齿 轮泵,取 z=6~14,齿数 z<14 时,要进行修正。 (3)输油量和齿宽 B、转速 n 成正比。一般齿宽 B=(6~10)m;转速 n 为 750r/min:1000 r/min、 1500r/min,转速过高,会造成吸油不足,转速过低,泵也不能正常工作。一般齿轮的最大圆周 速度不应大于 5~6m/s。 三、齿轮泵存在的问题(结构特点) 1、 齿轮泵的困油问题 齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数 ε 大于 1,也就是当一对齿轮尚未 脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对齿轮 的齿向啮合线之间形成了一个封闭容积,一部分油液也就被困在这一封闭容积中〔见图
3-5(a),齿轮连续旋转时,这一封闭容积便逐渐减小,到两啮合点处于节点两侧的对称位置 时〔见图3-5(b)〕,封闭容积为最小,齿轮再继续转动时,封闭容积又逐渐增大,直到图 3-5(c)所示位置时,容积又变为最大。在封闭容积减小时,被困油液受到挤压,压力急剧上升 使轴承上突然受到很大的冲击载荷,使泵剧烈振动,这时高压油从一切可能泄漏的缝隙中挤 出,造成功率损失,使油液发热等。当封闭容积增大时,由于没有油液补充,因此形成局部真空, 使原来溶解于油液中的空气分离出来,形成了气泡,油液中产生气泡后,会引起噪声、气蚀等 系列恶果。以上情况就是齿轮泵的困油现象。这种困油现象极为严重地影响着泵的工作平 稳性和使用寿命。 图3-5齿轮泵的困油现象 为了消除困油现象,在CB一B型齿轮泵的泵盖上铣出两个困油卸荷凹槽,其几何关系如 图3-6所示。卸荷槽的位置应该使困油腔由大变小时,能通过卸荷槽与压油腔相通,而当困油 腔由小变大时,能通过另一卸荷槽与吸油腔相通。两卸荷槽之间的距离为a,必须保证在任何 时候都不能使压油腔和吸油腔互通 按上述对称开的卸荷槽,当困油封闭腔由大变至最小时(图3-6),由于油液不易从即将 关闭的缝隙中挤出,故封闭油压仍将高于压油腔压力;齿轮继续转动,当封闭腔和吸油腔相通 的瞬间,高压油又突然和吸油腔的低压油相接触,会引起冲击和噪声。于是CB一B型齿轮泵将 卸荷槽的位置整个向吸油腔侧平移了一个距离。这时封闭腔只有在由小变至最大时才和压油 腔断开,油压没有突变,封闭腔和吸油腔接通时,封闭腔不会出现真空也没有压力冲击,这样 改进后,使齿轮泵的振动和噪声得到了进一步改善 图3-6齿轮泵的困油卸荷槽图图37齿轮泵的径向不平衡力 2、径向不平衡力 齿轮泵工作时,在齿轮和轴承上承受径向液压力的作用。如图3-7所示,泵的右侧为吸油 腔,左侧为压油腔。在压油腔内有液压力作用于齿轮上,沿着齿顶的泄漏油,具有大小不等的 压力,就是齿轮和轴承受到的径向不平衡力。液压力越高,这个不平衡力就越大,其结果不仅 加速了轴承的磨损,降低了轴承的寿命,甚至使轴变形,造成齿顶和泵体内壁的摩擦等。为了 解决径向力不平衡问题,在有些齿轮泵上,采用开压力平衡槽的办法来消除径向不平衡力,但 这将使泄漏增大,容积效率降低等。CB-B型齿轮泵则采用缩小压油腔,以减少液压力对齿顶 部分的作用面积来减小径向不平衡力,所以泵的压油口孔径比吸油口孔径要小。 3、齿轮泵的泄漏通道 在液压泵中,运动件间是靠微小间隙密封的,这些微小间隙从运动学上开成摩擦副,而
3-5(a)〕,齿轮连续旋转时,这一封闭容积便逐渐减小,到两啮合点处于节点两侧的对称位置 时〔见图 3-5(b) 〕,封闭容积为最小,齿轮再继续转动时,封闭容积又逐渐增大,直到图 3-5(c)所示位置时,容积又变为最大。在封闭容积减小时,被困油液受到挤压,压力急剧上升, 使轴承上突然受到很大的冲击载荷,使泵剧烈振动,这时高压油从一切可能泄漏的缝隙中挤 出,造成功率损失,使油液发热等。当封闭容积增大时,由于没有油液补充,因此形成局部真空, 使原来溶解于油液中的空气分离出来,形成了气泡,油液中产生气泡后,会引起噪声、气蚀等 一系列恶果。以上情况就是齿轮泵的困油现象。这种困油现象极为严重地影响着泵的工作平 稳性和使用寿命。 图 3-5 齿轮泵的困油现象 为了消除困油现象,在 CB—B 型齿轮泵的泵盖上铣出两个困油卸荷凹槽,其几何关系如 图 3-6 所示。卸荷槽的位置应该使困油腔由大变小时,能通过卸荷槽与压油腔相通,而当困油 腔由小变大时,能通过另一卸荷槽与吸油腔相通。两卸荷槽之间的距离为 a,必须保证在任何 时候都不能使压油腔和吸油腔互通。 按上述对称开的卸荷槽,当困油封闭腔由大变至最小时(图 3-6),由于油液不易从即将 关闭的缝隙中挤出,故封闭油压仍将高于压油腔压力;齿轮继续转动,当封闭腔和吸油腔相通 的瞬间,高压油又突然和吸油腔的低压油相接触,会引起冲击和噪声。于是 CB—B 型齿轮泵将 卸荷槽的位置整个向吸油腔侧平移了一个距离。这时封闭腔只有在由小变至最大时才和压油 腔断开,油压没有突变,封闭腔和吸油腔接通时,封闭腔不会出现真空也没有压力冲击,这样 改进后,使齿轮泵的振动和噪声得到了进一步改善。 图 3-6 齿轮泵的困油卸荷槽图 图 3-7 齿轮泵的径向不平衡力 2、 径向不平衡力 齿轮泵工作时,在齿轮和轴承上承受径向液压力的作用。如图 3-7 所示,泵的右侧为吸油 腔,左侧为压油腔。在压油腔内有液压力作用于齿轮上,沿着齿顶的泄漏油,具有大小不等的 压力,就是齿轮和轴承受到的径向不平衡力。液压力越高,这个不平衡力就越大,其结果不仅 加速了轴承的磨损,降低了轴承的寿命,甚至使轴变形,造成齿顶和泵体内壁的摩擦等。为了 解决径向力不平衡问题,在有些齿轮泵上,采用开压力平衡槽的办法来消除径向不平衡力,但 这将使泄漏增大,容积效率降低等。CB—B 型齿轮泵则采用缩小压油腔,以减少液压力对齿顶 部分的作用面积来减小径向不平衡力,所以泵的压油口孔径比吸油口孔径要小。 3、 齿轮泵的泄漏通道 在液压泵中,运动件间是靠微小间隙密封的,这些微小间隙从运动学上开成摩擦副,而
高压腔的油液通过间隙向低压腔泄漏是不可避免的:齿轮泵压油腔的压力油可通过三条途径 泄漏到吸油腔去:一是通过齿轮啮合线处的间隙(齿侧间隙):二是通过体定子环内孔和齿 顶间隙的径向间隙(齿顶间隙);三是通过齿轮两端面和侧板间的间隙(端面间隙)。在这三 类间隙中,端面间隙的泄漏量最大,压力越高,由间隙泄漏的液压油液就愈多,因此为了实 现齿轮泵的高压化,为了提高齿轮泵的压力和容积效率,需要从结构上来采取措施,对端面 间隙进行自动补偿 四、高压齿轮泵的特点 上述齿轮泵由于泄漏大(主要是端面泄漏,约占总泄漏量的70%~80%),且存在径向不平 衡力,故压力不易提高。高压齿轮泵主要是针对上述问题采取了一些措施,如尽量减小径向不 平衡力和提高轴与轴承的刚度;对泄漏量最大处的端面间隙,采用了自动补偿装置等。下面对 端面间隙的补偿装置作简单介绍 1.浮动轴套式图3-8(a)是浮动轴套式的间隙补偿装置。它利用泵的出口压力油,引入 齿轮轴上的浮动轴套1的外侧A腔,在液体压力作用下,使轴套緊贴齿轮3的侧面,因而可以 消除间隙并可补偿齿轮侧面和轴套间的磨损量。在泵起动时,靠弹簧4来产生预紧力, 保证了轴向间隙的密封。 图3-8端面间隙补偿装置示意图 2.浮动侧板式浮动侧板式补偿装置的工作原理与浮动轴套式基本相似,它也是利用泵的 出口压力油引到浮动侧板1的背面〔见图3-8(b)〕,使之紧贴于齿轮2的端面来补偿间隙 起动时,浮动侧板靠密封圈来产生预紧力。 3.挠性侧板式图3-8(c)是挠性侧板式间隙补偿装置,它是利用泵的出口压力油引到 侧板的背面后,靠侧板自身的变形来补偿端面间隙的,侧板的厚度较薄,内侧面要耐磨(如烧 结有0.5~0.7mm的磷青铜),这种结构采取一定措施后,易使侧板外侧面的压力分布大体上 和齿轮侧面的压力分布相适应。 六、内啮合齿轮泵 内啮合齿轮泵的工作原理也是利用齿间密封容积的变化来实现吸油压油的。图3-9所示 是内啮合齿轮泵的工作原理图。 图3-9所示是内啮合齿轮泵的工作原理图
高压腔的油液通过间隙向低压腔泄漏是不可避免的;齿轮泵压油腔的压力油可通过三条途径 泄漏到吸油腔去;一是通过齿轮啮合线处的间隙(齿侧间隙);二是通过体定子环内孔和齿 顶间隙的径向间隙(齿顶间隙);三是通过齿轮两端面和侧板间的间隙(端面间隙)。在这三 类间隙中,端面间隙的泄漏量最大,压力越高,由间隙泄漏的液压油液就愈多,因此为了实 现齿轮泵的高压化,为了提高齿轮泵的压力和容积效率,需要从结构上来采取措施,对端面 间隙进行自动补偿。 四、高压齿轮泵的特点 上述齿轮泵由于泄漏大(主要是端面泄漏,约占总泄漏量的 70%~80%),且存在径向不平 衡力,故压力不易提高。高压齿轮泵主要是针对上述问题采取了一些措施,如尽量减小径向不 平衡力和提高轴与轴承的刚度;对泄漏量最大处的端面间隙,采用了自动补偿装置等。下面对 端面间隙的补偿装置作简单介绍。 1.浮动轴套式 图 3-8(a)是浮动轴套式的间隙补偿装置。它利用泵的出口压力油,引入 齿轮轴上的浮动轴套 1 的外侧 A 腔,在液体压力作用下,使轴套紧贴齿轮 3 的侧面,因而可以 消除间隙并可补偿齿轮侧面和轴套间的磨损量。在泵起动时,靠弹簧 4 来产生预紧力, 保证了轴向间隙的密封。 图 3-8 端面间隙补偿装置示意图 2.浮动侧板式 浮动侧板式补偿装置的工作原理与浮动轴套式基本相似,它也是利用泵的 出口压力油引到浮动侧板 1 的背面〔见图 3-8(b)〕,使之紧贴于齿轮 2 的端面来补偿间隙。 起动时,浮动侧板靠密封圈来产生预紧力。 3.挠性侧板式 图 3-8(c)是挠性侧板式间隙补偿装置,它是利用泵的出口压力油引到 侧板的背面后,靠侧板自身的变形来补偿端面间隙的,侧板的厚度较薄,内侧面要耐磨(如烧 结有 0.5~0.7mm 的磷青铜),这种结构采取一定措施后,易使侧板外侧面的压力分布大体上 和齿轮侧面的压力分布相适应。 六、内啮合齿轮泵 内啮合齿轮泵的工作原理也是利用齿间密封容积的变化来实现吸油压油的。图 3-9 所示 是内啮合齿轮泵的工作原理图。 图 3-9 所示是内啮合齿轮泵的工作原理图
它是由配油盘(前、后盖)、外转子(从动轮)和偏心安置在泵体内的内转子(主动轮)等组 成。内、外转子相差一齿,图中内转子为六齿,外转子为七齿,由于内外转子是多齿啮合,这就 形成了若干密封容积。当内转子围绕中心O1旋转时,带动外转子绕外转子中心O2作同向旋转 这时,由内转子齿顶A1和外转子齿谷A2间形成的密封容积C(图中阴线部分),随着转子的转动 密封容积就逐渐扩大,于是就形成局部真空,油液从配油窗口b被吸入密封腔,至A′、A"′ 位置时封闭容积最大,这时吸油完毕。当转子继续旋转时,充满油液的密封容积便逐渐减小, 油液受挤压,于是通过另一配油窗口a将油排出,至内转子的另一齿全部和外转子的齿凹A2 全部啮合时,压油完毕,内转子每转一周,由内转子齿顶和外转子齿谷所构成的每个密封容积, 完成吸、压油各一次,当内转子连续转动时,即完成了液压泵的吸排油工作。 内啮合齿轮泵的外转子齿形是圆弧,内转子齿形为短幅外摆线的等距线,故又称为内啮 合摆线齿轮泵,也叫转子泵 内啮合齿轮泵有许多优点,如结构紧凑,体积小,零件少,转速可高达10000r/mim,运动 平稳,噪声低,容积效率较高等。缺点是流量脉动大,转子的制造工艺复杂等,目前已采用粉末 冶金压制成型。随着工业技术的发展,摆线齿轮泵的应用将会愈来愈广泛内啮合齿轮泵可正、 反转,可作液压马达用
它是由配油盘(前、后盖)、外转子(从动轮)和偏心安置在泵体内的内转子(主动轮)等组 成。内、外转子相差一齿,图中内转子为六齿,外转子为七齿,由于内外转子是多齿啮合,这就 形成了若干密封容积。当内转子围绕中心O1旋转时,带动外转子绕外转子中心O2作同向旋转。 这时,由内转子齿顶A1和外转子齿谷A2间形成的密封容积C(图中阴线部分),随着转子的转动 密封容积就逐渐扩大,于是就形成局部真空,油液从配油窗口 b 被吸入密封腔,至 A1′、A2′ 位置时封闭容积最大,这时吸油完毕。当转子继续旋转时,充满油液的密封容积便逐渐减小, 油液受挤压,于是通过另一配油窗口 a 将油排出,至内转子的另一齿全部和外转子的齿凹 A2 全部啮合时,压油完毕,内转子每转一周,由内转子齿顶和外转子齿谷所构成的每个密封容积, 完成吸、压油各一次,当内转子连续转动时,即完成了液压泵的吸排油工作。 内啮合齿轮泵的外转子齿形是圆弧,内转子齿形为短幅外摆线的等距线,故又称为内啮 合摆线齿轮泵,也叫转子泵。 内啮合齿轮泵有许多优点,如结构紧凑,体积小,零件少,转速可高达 10000r/mim,运动 平稳,噪声低,容积效率较高等。缺点是流量脉动大,转子的制造工艺复杂等,目前已采用粉末 冶金压制成型。随着工业技术的发展,摆线齿轮泵的应用将会愈来愈广泛内啮合齿轮泵可正、 反转,可作液压马达用
第三节叶片泵 叶片泵的结构较齿轮泵复杂,但其工作压力较高,且流量脉动小,工作平稳,噪声较小,寿 命较长。所以它被广泛应用于机械制造中的专用机床、自动线等中低液压系统中,但其结构 复杂,吸油特性不太好,对油液的污染也比较敏感。 根据各密封工作容积在转子旋转一周吸、排油液次数的不同,叶片泵分为两类,即完成 次吸、排油液的单作用叶片泵和完成两次吸、排油液的双作用叶片泵。单作用叶片泵多为 变量泵,工作压力最大为7.0Mpa,双作用叶片泵均为定量泵,一般最大工作压力亦为7.0Mpa 结构经改进的高压叶片泵最大的工作压力可达16.0~21.0Mpa 单作用叶片泵 1、单作用叶片泵的工作原理 单作用叶片泵的工作原理如图3-10所示,单作用叶片泵由转子1、定子2、叶片3和端 盖等组成。定子具有圆柱形内表面,定子和转子间有偏心距。叶片装在转子槽中,并可在槽 内滑动,当转子回转时,由于离心力的作用,使叶片紧靠在定子内壁,这样在钉子、转子 叶片和两侧配油盘间就形成若干个密封的工作空间,当转子按图示的方向回转时,在图的右 部,叶片逐渐伸出,叶片间的工作空间逐渐增大,从吸油口吸油,这是吸油腔。在图的左部 叶片被定子内壁逐渐压进槽内,工作空间逐渐缩小,将油液从压油口压出,这是压油腔,在 吸油腔和压油腔之间,有一段封油区,把吸油腔和压油腔隔开,这种叶片泵在转子每转一周 每个工作空间完成一次吸油和压油,因此称为单作用叶片泵。转子不停地旋转,泵就不断地 吸油和排油 吸油 吸油 图3-10单作用叶片泵的工作原理 2.单作用叶片泵的排量和流量计算 单作用叶片泵的排量为各工作容积在主轴旋转一周时所排出的液体的总和,如图3-11 所示,两个叶片形成的一个工作容积V′近似地等于扇形体积V1和V2之差,即:
第三节 叶片泵 叶片泵的结构较齿轮泵复杂,但其工作压力较高,且流量脉动小,工作平稳,噪声较小,寿 命较长。所以它被广泛应用于机械制造中的专用机床、自动线等中低液压系统中,但其结构 复杂,吸油特性不太好,对油液的污染也比较敏感。 根据各密封工作容积在转子旋转一周吸、排油液次数的不同,叶片泵分为两类,即完成 一次吸、排油液的单作用叶片泵和完成两次吸、排油液的双作用叶片泵。单作用叶片泵多为 变量泵,工作压力最大为 7.0Mpa,双作用叶片泵均为定量泵,一般最大工作压力亦为 7.0Mpa, 结构经改进的高压叶片泵最大的工作压力可达 16.0~21.0Mpa。 一、单作用叶片泵 1、单作用叶片泵的工作原理 单作用叶片泵的工作原理如图 3-10 所示,单作用叶片泵由转子 1、定子 2、叶片 3 和端 盖等组成。定子具有圆柱形内表面,定子和转子间有偏心距。叶片装在转子槽中,并可在槽 内滑动,当转子回转时,由于离心力的作用,使叶片紧靠在定子内壁,这样在钉子、转子、 叶片和两侧配油盘间就形成若干个密封的工作空间,当转子按图示的方向回转时,在图的右 部,叶片逐渐伸出,叶片间的工作空间逐渐增大,从吸油口吸油,这是吸油腔。在图的左部, 叶片被定子内壁逐渐压进槽内,工作空间逐渐缩小,将油液从压油口压出,这是压油腔,在 吸油腔和压油腔之间,有一段封油区,把吸油腔和压油腔隔开,这种叶片泵在转子每转一周, 每个工作空间完成一次吸油和压油,因此称为单作用叶片泵。转子不停地旋转,泵就不断地 吸油和排油。 图 3-10 单作用叶片泵的工作原理 2.单作用叶片泵的排量和流量计算 单作用叶片泵的排量为各工作容积在主轴旋转一周时所排出的液体的总和,如图 3-11 所示,两个叶片形成的一个工作容积 V′近似地等于扇形体积 V1 和 V2 之差,即:
10单作用叶片泵的工作原理 图3-11单作用叶片泵排量计算简图 1—转子2一定子3一叶片 1-1=a(+)-(-)] 4兀ReB (3-13) 式中:R为定子的内径(m);e为转子与定子之间的偏心矩(m);B为定子的宽度(m);β为相邻两个叶片间的夹 角,B=2丌/z;z为叶片的个数 因此,单作用叶片泵的排量为: =zl'=4丌ReB (3-14) 故当转速为n,泵的容积效率为n,时的泵的理论流量和实际流量分别为 q g, n=4r Re bnn. (3-16) 在式(3-14)至式(3-16)中的计算中并未考虑叶片的厚度以及叶片的倾角对单作用叶片 泵排量和流量的影响,实际上叶片在糟中伸出和缩进时,叶片槽底部也有吸油和压油过程, 一般在单作用叶片泵中,压油腔和吸油腔处的叶片的底部是分别和压油腔及吸油腔相通的, 因而叶片槽底部的吸油和压油恰好补偿了叶片厚度及倾角所占据体积而引起的排量和流量 的减小,这就是在计算中不考虑叶片厚度和倾角影响的缘故。 单作用叶片泵的流量也是有脉动的,理论分析表明,泵内叶片数越多,流量脉动率越小, 此外,奇数吐片的泵的脉动率比偶数吐片的泵的脉动小所以单作用叶片泵的吐片数均为 奇数,一般为13或15片 3.单作用叶片泵的结构特点 (1)改变定子和转子之间的偏心便可改变流量。偏心反向时,吸油压油方向也相反 (2)处在压油腔的叶片顶部受到压力油的作用,该作用要把叶片推入转子槽内。为了使叶 片顶部可靠地和定子内表面相接触,压油腔一侧的叶片底部要通过特殊的沟槽和压油腔相 通。吸油腔一侧的叶片底部要和吸油腔相通,这里的叶片仅靠离心力的作用顶在定子内表面 (3)由于转子受到不平衡的径向液压作用力,所以这种泵一般不宜用于高压。 (4)为了更有利于叶片在惯性力作用下向外伸出,而使叶片有一个与旋转方向相反的倾 斜角,称后倾角,一般为24° 、双作用叶片泵 1.双作用叶片泵的工作原理双作用叶片泵的工作原理如图3-12所示,泵也是由定子 1、转子2、叶片3和配油盘(图中未画出)等组成。转子和定子中心重合,定子内表面近 似为椭圆柱形,该椭圆形由两段长半径R、两段短半径r和四段过渡曲线所组成。当转子转 动时,叶片在离心力和(建压后)根部压力油的作用下,在转子槽内作径向移动而压向定子内 表,由叶片、定子的内表面、转子的外表面和两侧配油盘间形成若干个密封空间,当转子按图 示方向旋转时,处在小圆弧上的密封空间经过渡曲线而运动到大圆弧的过程中,叶片外伸,密 封空间的容积增大,要吸入油液;再从大圆弧经过渡曲线运动到小圆弧的过程中,叶片被定子
图 3-10 单作用叶片泵的工作原理 图 3-11 单作用叶片泵排量计算简图 1— 转子 2—定子 3—叶片 2— ( ) ( ) 2 2 1 2 1 4 ' Re 2 V V V B R e R e B z = − = + − − = (3-13) 式中:R 为定子的内径(m);e 为转子与定子之间的偏心矩(m);B 为定子的宽度(m);β 为相邻两个叶片间的夹 角,β=2π/z;z 为叶片的个数。 因此,单作用叶片泵的排量为: V zV B = =' 4 Re (3-14) 故当转速为 n,泵的容积效率为 ηv 时的泵的理论流量和实际流量分别为: 4 Re i q Vn Bn = = (3-15) 4 Re i v v q q Bn = = (3-16) 在式(3-14)至式(3-16)中的计算中并未考虑叶片的厚度以及叶片的倾角对单作用叶片 泵排量和流量的影响,实际上叶片在槽中伸出和缩进时,叶片槽底部也有吸油和压油过程, 一般在单作用叶片泵中,压油腔和吸油腔处的叶片的底部是分别和压油腔及吸油腔相通的, 因而叶片槽底部的吸油和压油恰好补偿了叶片厚度及倾角所占据体积而引起的排量和流量 的减小,这就是在计算中不考虑叶片厚度和倾角影响的缘故。 单作用叶片泵的流量也是有脉动的,理论分析表明,泵内叶片数越多,流量脉动率越小, 此外,奇数叶片的泵的脉动率比偶数叶片的泵的脉动率小,所以单作用叶片泵的叶片数均为 奇数,一般为 13 或 15 片。 3.单作用叶片泵的结构特点 (1)改变定子和转子之间的偏心便可改变流量。偏心反向时,吸油压油方向也相反。 (2)处在压油腔的叶片顶部受到压力油的作用,该作用要把叶片推入转子槽内。为了使叶 片顶部可靠地和定子内表面相接触,压油腔一侧的叶片底部要通过特殊的沟槽和压油腔相 通。吸油腔一侧的叶片底部要和吸油腔相通,这里的叶片仅靠离心力的作用顶在定子内表面 上。 (3)由于转子受到不平衡的径向液压作用力,所以这种泵一般不宜用于高压。 (4)为了更有利于叶片在惯性力作用下向外伸出,而使叶片有一个与旋转方向相反的倾 斜角,称后倾角,一般为 24°。 二、双作用叶片泵 1.双作用叶片泵的工作原理 双作用叶片泵的工作原理如图 3-12 所示,泵也是由定子 1、转子 2、叶片 3 和配油盘(图中未画出)等组成。转子和定子中心重合,定子内表面近 似为椭圆柱形,该椭圆形由两段长半径 R、两段短半径 r 和四段过渡曲线所组成。当转子转 动时,叶片在离心力和(建压后)根部压力油的作用下,在转子槽内作径向移动而压向定子内 表,由叶片、定子的内表面、转子的外表面和两侧配油盘间形成若干个密封空间,当转子按图 示方向旋转时,处在小圆弧上的密封空间经过渡曲线而运动到大圆弧的过程中,叶片外伸,密 封空间的容积增大,要吸入油液;再从大圆弧经过渡曲线运动到小圆弧的过程中,叶片被定子